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Special Computation Procedures. 1.

I. Introduction.

Many problems of applied mathematics arise naturally
as differential equations. In most cases there 1s no hope
of finding an explicit, closed representation of the solu-
tion. Thus we are led to the computer. However, the
availability of high-speed computers does not mean that
"sractical men" can glve up the analytical study of dif-
ferential equations. o | ’

Indeed, in some sense, the great advance in our com-
putational ability requires that we put more effort into
the analytical study. After all, twenty years ago we
could only shrug our shoulders at these problems. Now
we can and do attempt to get approximate results. And,
in order to get cgmputational results that are meaningful,
we must do some analysis. | '

In these lectures, I hope to present some of the 1ldeas

and results in this area.

IT. Ordinary Differential Equations.

The simplest problem is Pure Initial-Value ?roblem

(2.1) 3" - £, y),  v(xg) =y,

Here, v = y(x) may be a vector and then (2.1) represents

a system of equations. It is well known that almost every
Initial-Value problem may be put in this form. For,
suppose we start with

(2.2) vV sex, v vh P, v g) = v
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1 U
Then we set Zl =Yy, 2, = y( ), cres 29 = y( ), and we

write {2.2) as

21 =2

-1
)I"‘f(x’ z’ tl, ooo’zzlj),.z;j(xo) =yg N

L J=1,2, ...,V

We now turn to the question of numerical methods for
approximating the solution y(x) of (2.1).

N
|

We assume that f(x, y) is continuous in (x, y) and
satisfies a Lipschitz condition in y, i.e., there is con-
stant ld such that

{2.3) "f(x, y) - £(x, zﬂl < LJ”y - z".

These conditions assure us of the existence of a unique
solution y(x) in some neighborhood of Xg: For those of you
who are skeptical of such mathematical nicetles, let us
consider two examples.

Example 1: y' = yl/z, y(0) = O.

Then yl(x) = 0 and ye(x) = %xz are solutions in the
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interval 0 < x < 1.

Example 2: y' =1 + y2, y(0) = O.

In this case y(x) = tan x and there 1is no solution in the
"larger" interval 0 < x < 77 .

Now, let an increment h be chosen3 then we seek the
values y, which approximate y(kh + xo).

The simplest formula we can use is
(2.4) Yy =Y+ hf(xk, Yk), Y, =y,

Here X = Xq + kh. This is an example of a Single-Step
Method which we write as

(2.5) Yo =Y + h¢(xk, Y, ; h).
From the form of (2.5) one might think that
4)(xk’ Yk.; h) = f(X.k, Yk)

is the only "natural" choice, However, let me point out
that the familiar Runge-Kutta method is also of this form.

Theorem 1: Let f(x, y) be continuous in (x, y) and satisfy
the Lipschitz condition (2.3). Moreover, let ¢(x, y; h)
also satisfy a Lipschitz condition. Then

i
‘

(2.6) Lim §(x, y, h) = £(x, &)
' ' h— O+
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Special Computation Procedures. 4,

is a necessary and sufficient condition for the convergence
of the solution {¥,{ of (2.5) to y(X) in the limit as

h—0, kh + x5 = X.

Theorem 2: Let f(x, y) be continuous in (x, y) and satisfy

the Lipschitz condition (2.3)$ let ¢(x, y; h) also satisfy
a Lipschitz condition. Moreover, let the "consistency"
condition (2.6) be satisfied. .Finally, let the truncation
error be O(hp),p >0, i.e., if y(x) is the solution of
(2.1), then

y [(k#1) B) = y(kn) + h[q‘uxk, y(kh); n) + o(nP)] .
Then, as h—0 and kh = X, we have
(2.7) "Yk - y(kh)” = o(nP).

We will omit the proof of Theorem 1, as it is technically
complicated. However, let us give a proof of Theorem 2.

Proof of Theorem 2. Let

E =Y - y(kh).

Then, from (2.5) and (2.7) we have

Bipn = B + 0 {00x, %5 n) - 9, y(n); n] + owP)].
Therefore; since b also satisfies a Lipschitz conditlon,

s | E;, “Ek“ + nl {“Ek“ + O(hp)}:

k+1
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We sum the geometric progression and find that

”Ekﬂ” < (1 +nl KL, “EJ‘ + '(i“"zl_l—l:l{iﬁi - 1 M P+l
That is

| < onbGer) [”EOH + M—h?}. | '

k+1“ — L,

If we now assume that EO = 0, we obtain the desired result.

Having these two theorems, we wlll leave the topic of
single-step methods for the initial-value problem.

Of course, there are othef methods of treating the
initial-value broblem. Let us consider the Linear Multi-
Step Methods. The simplest such method is

=Y, ; +2nf(x., Y, ).

(2,8} Y

Notice that in this case we must specify both YO and Yl'
Now YO can be taken as Yor but it is almost impossible to
specify Yl exactly.

We now consider only the scaler case, i.e., y(x) is
a scaler, not a vector.

In general, we have constants C113 CKQ, ...,Cik,
}31, ...,/3k, and we use the recurrence relation
706
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v 3
(2.9) e Yoe ¥ ey Yooy + oo 1Y

. {/Bk (Xeyns Yean) + -+ Lo Tl Yn)}’
or

Kk k
(2.9a} 325 c(j Copy = h}éo /33 f(xn+J, Yn+J).

Of course, we assume C{j # 0. If /3k = 0, we say that
(2.9) is an "explicit" linear multi-step method. On the
other hand, if [}k # 0, then we have an "implicit" method.

Example 3: Consider the linear multi-step method

Y . + 3% Y )
ln+3 2" n+2 n+2’°

—
n
-
o

o

|
-3y L =30 f(xn+2’

One can easily verify that -- provided f(x, y) is nice
enough -~

y(xs) + 2 (x,0) - 3y(x,,) + 3v(x)) = 30 £(x,, y(x,))
+ o(n*).

That is, (2.10) is a consistent approximation to (2.1) and
with a small truncation error.

When I present this example in class, I ask my students
to try the two problems

I
-

y' = -y, y(0)
y' =9, y(0)

il
b

in the range 0 < x << 1 with h = 0.01. For those of you
who have access to a computer, I recommend these problems.

707
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You will find them very instructive.

In any case, a simple analysis -- but one which 1s too
lengthy to give here -- shows that the solutions of (2.10)
are unstable and do not converge to the solution of (1.2)
Moreover, this 1s true even in the simplest aqases.

The results in this case are too complicated to prove
in the short space of time we have here. However, they are
easy enough to state. (See Henrici [1] for details.)

Let

k
(2.11)  0(C) = g&>O<J€J'

We have a Stabllity Condition: For all ( which are
roots of/<>( g) = 0, we must have

(2.11a) Iq==2
Moreover, 1if é is a double root of/O (C;) = 0, we must have

(2.110)  |Gl< 1
And, as before, we have a Consistency Condition:

This condition -- in words -- merely‘says‘that the solutions

of (2.1), i.e., the solutions of the differential equation

"almost" satisfy the difference equation (2.9). It is

rather easy to verify that a necessary condition for con-

sistency is |
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[ k
o, = 0,
j=o 7
(2.12)
k
Z (Jq'j'ﬂj)=o
Jj=0

\
Definition: A linear multi-step method given . by two sets

of coefficlents {cqu}, {]G j} is called convergent if
the error E_ = ‘Yn - y(xn)l——>0 as h—>0 and n—>oo in
such a way that x_ = X, provided only E,—0 for j = O,

1,...,k-1 and the function f(x, y) is continuous in (x, y)

for all y and ]x-xol < b (for some b > 0) and also
satisfies a Lipschitz condition in y.

Theorem 3: The linear multi-step method given by the two
sets of coefficilents {CK } s 18 } is convergent if and
only if both the stability condition (2.11a), (2.11b) and
the consistency condition (2.12) are satisfied.

Theorem 4: Suppose the linear multi-step method (2.9) is
convergent. Let y(x) be a solution of (2.1). Assume also
that

k
0% ¥ ) = ny By £(xy,y vixg,,)) + o).

Then
| - p
lEml _‘o(h ).

Now, let us mention another approach to our basic
problem. This approach is motivated by the fact that
many good linear multi-step methods are impliclt, i.e.,
/3k # 0. Therefore the solution of (2.9) becomes messy.
So we consider Predictor-Correcter Methods of the form
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k-1 k-1
e ¥ L a3 Yy =h 1 by £(x 4 Y4)
- J=0 j=0
(2.13) ' |

g y k-1
. = 2
jgoo(, Yppy =B {/OK £(x_0o Yo,) + b ﬂjf_},o(k £ 0.

The general idea here is to use a high-order predictor
formula and a "stable" correcter formula.

Before we leave these initial-yalue problems, a few

remarks are 1ln order.

The motivation for linear multi-step methods is cléarly
the desire to use more accurate formulae. However, one
should note that these methods can lead to many complica-
tions. First of all, one must have accurate methods for
more "starting" values than are implied by the problem.
Also, there 1s the problem of stablility. Finally, there
is a whole host of problems assoclated with the slow
decay of certaln components of the error which have been
introduced by the linear multi-step method 1tself. Once
more, let me recommend the book by Henrici.

Now, let us say a few words about "boundary-value"
problems. Consider the problem

(2.14) {-'(pyg)'

- y(0)

i

f(x)) O_<_Xél
y(1) = o,

where the function p(x) Eszo >0 is a "smooth! function.

We take h = 1/M, where M 1s an integer. Once more,
let Y'j represent an approximation to y(jh), and let
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Pyy1/e = P[(§+1/2}h]‘ The first set of equations to come
to mind are

Y. =Y =0
0 m

(2.35) 1 -y 10 Y50 * (P41 0 * Pyyisp) Yy = Pyyysm Y41 =
2
h° f£{x_ ).
T

Now we have two problems:

(1.) Can we solve these equations?

(2.) Assuming the answer to (1.) is yes, does the
error E_ = |Yk - y{kn)|-—»0?

In both cases the answer is yes! Let us look at the
first question.

Consider a general tridiagonal system of linear
equations of the form ¥. =Y =0
a, ¥ =
3 Ti-1 J 7J J "+l
where

(2.16) by ;E:ladl + ICJIO

Then, when we look at the straight-forward elimination
procedure, we discover the following algorithm. Let

{2.17) Gy = F, =0
= G = -
(2.17a) D, =% +a G . fork=1, 2, ,M-1.
{(2.17p) g = ;uk/Dk
Fre = (Q - AL P 3)/De
Then
) -
(2.18a} Yy 1 = Fyo1
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and for Jj 41 M-1, we have

(2.18b) Y + F

;7% T Ty

Thﬁs, our equation can be solved rather easily. Moreover,
the condition (2.16) guarantees that this procedure is
numerically stable.

As for the second question, if we multiply (2.15) by
Y, and sum on J, we have

& [Famase Wy = ¥g) + Yy (7 v, -

L n? £, Y,
or (1)
Y, - Y 2
B I 12 %
%: Pj-1/2 [ B } ) £3%;
or
(2.19) Y. -Y, 2
I 1 2, 2
hoL [ R } é--po\/hz e3P Ve 3 [l
And;, for any set ZJ 3 3 =0,1, 2, ... ,M with
ZO = Zm = 0, we have

2 2. - 2 2
P L=

This last result is easily established by elementary matrix
theory. Since

2

h 1
2(1-—cos”|]‘h)_'—4> e as h 0
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we can claim the existence of a constant K > O so that

[h 3 ‘Z4 2} £ K2[£ ) (fi_:_fj;l)zj,
C)RREANN I L B

(7
Thus, using (2.19), wz have

Vo Zlvgle-\/hi(i%ﬂ)eéﬁ

(220) \/ Z(

Let k >r. Then

o ). ‘YJ \.2

k ¥, -Y
Y - Y. =h X [“L‘TTJLJJ'
j=r+1
Therefore,
Y, - Y 2
% -t n ¥ 'llf- (ie-z)n - h(z)( h —l)
J=r+l J

That is, using (2.20).

(2.21a) | ¥{kn) - ¥(zh)| £ |1 - en| 172 %i;VAI EEZIfJIQ

And if r = O,

(2.21D) lYk ,g;_%i;\éu }: ,f3’2

It is now an easy matter toc prove the convergence
of the {Yk} to tne solution of the boundary -value problem.
The simplest approach is merely to observe that the error

E, satisfies a similar difference equation. However, in
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this case. the right-hand-side fj-—DO as h—>0. Hence
h Z ‘fj‘z-—-po as h—>0

and the convergence follows from (2.21b).

III. Partial Differential Equations.

Once more, let us consider the Initial-Value Problem.
Consider the special case of a first-order-linear system of
the form

—S—% = P(x, t; D) U,
(3.1)

U(x, 0) = Uo(x).
Here, x = (xl, Xps ...,xn) and U is a vector { Uy Uy, ...,UN}
and P(x, t; D) is a matrix polynomial in the ( gx_) with

coefficients depending on (x, t).

Let's look at a very simple special case --

dU _ U
2t Jx

(3.2)
U(x, 0) = £(x)

One can easily prove that the solution to this problem
is

(3.2a) U(x, t) = f{x - t).

Indeed, to verify that (3.2a) is a solution (assuming that
f(x) is differentiable) 1is an exercise in Calculus.
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Even thougn we know the solution of this problem,
let us lock at some finite-difference approximations.

V(x, t + k) - Ulx, t) _ VUfx+h, t) - VUlx, t)
(A.) K = h

3

which reduces to
(3.3) Y(x, t+k) = (L+A) Vix, t) - AV(x +h, t)

where A\ = k/h. Repeated application of (3.3) leads to a
formula of the form

b e
iAa

n
{3.4) Vlx, nk) = jZO a, Vix + Jh, 0) = ¥ 2, f(x+3h).
The exact values of the coefficlents aj dre inessential. for

our present argument. The important fact is that the

value of V{x, t) depends only on the value of f(x) at

points to the right of x. On the other hand, from (3.2a),

we see that the sclution of the differential equatlion de-

pends on a value of f(x) at a point to the left of x;

namely {(x-t). It is now an easy matter to construct an

initial function f{x) whicn is very smooth -- say infinitely
differentiable -- and the solutions of (3.3) cannot possibly
converge to f{x-t). For example, let f(x) j} 0 for x < O

and f{x) = O for x > 0. Then, we see from (3.4) that

V(x, nk) = 0 for all x > 0. On the other hand, U(x, nk) j> 0
for all x < nk.

All right, let’'s try another approach --

Ulx, t +k) - VUlx, t) _ V{x, t) -~ V(x-h, t)
<B°) k - h b ]

715
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which reduces to

(3.5) Ylx, t +k) = (1 - A) p(x, t) + A V(x-h, t).

In this case, an argument very similar to the one we have
Just given shows that we must take )\ < 1.

Thus, these examples 1llustrate the general situation.
As 1s the case of ordinary differential equations, 1t is
not enough to have a consistent-approximation to the dif-
ferential equation. Moreover, the restrictions on the
difference schemes are frequently restrictions on ratios
of the step-lengths in the different coordinate directions.

Let us look at another example, the heat equation

2
(3.6) AU _ 3d“u

it - 2 55 U(x, 0) = £(x).
X

We try the difference scheme

V (x, t+kf{L- V(x, t) =1_2§U(x—h, t) - 2U(x, t) +

o)

V(x + h, t)} .

In this case, the necessary condition is

At L _]__-
(Ax)z —_ 2

This result is particularly interesting because, unlike our

(3.7)

earlier results, there does not seem to be any obvious
relationship between (3.7) and the analytical properties of
the solution of (3.6). That statement is not strictly
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Lo

true for, if (3.7; is sa+isfied, %then

(3.8)  sup |V ix ne)| Lsu | Vx, 0)]
X x

and the physically interesting solutions of (3.6) satisfy
a similar estimate. On the other hand, as we shall see,
there are convergent difference schemes for the heat equa-
tion which do not enjoy property (3.8). Let me put it
this way: Since (3.7) impiies (3.8), 1t 1s easy to prove
that the solutions ) (x, nk) of the difference scheme
converge to U(x. t} the solution of (3.6) provided that
(3.7} hclds. However, it is not apparent that (3.7) is

a necessary condition for convergence.

Let us return to our general problem. If we select
an h = (hy, h,, oo,)hn) and k then a finite difference
equation should give us approximations to the solution
U(x, t) at the lattice points (J; hys Jp hos oevs 3 Do rk).
Let }/{(r) denote the vector

o0
{U(jl hlu e Jl’l hns I’K)} Jl’ 32 °°°,Jn = -00,
and let ||V {r}|| denote some norm on these "vectors".

For example, we could have

(3.92)  |lwied|| = sup |V(ayhys dphgs oovs dnps x|
or Ishs
(3.90) “b%r}g = hyh, ... B - ;{: ‘l}(thl, Jghps «e
s,
3ons 7|2
etc.,
T
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If B is a linear operator (i.e., an infinite matrix
in this case) acting on these vectors, we define

(3.10) l\BIl— sup |IBx]|
x=10 |x”

Suppose we have a finite-difference approximation to
(3.1) of the form

(3.11) Y(r+l) = B(r)* V()
U(thl’ 32h2: "”Jnhn’ O) = UO(thl’ J2h2’

j.h ).

nn’.

In (3.11) we should write V(r+l; h) and B(r; h) since these
operators and vectors will depend on the lattice h:and the
increment k, etc.

Definition: We say that the family of operators {B(r; h)}
is stable in the interval 0 < t < T and in thell “norm
if there is a constant K, depending on T, such that

(3.12) || B(r; n) B(r-1; n) ... B(3+1; n) B(3; n)|| < &

for all r, j with
(3.12a) 0L J <L r& Tk,

The basic convergence argument is based on this
notion and a simple argument which we saw earlier 1n our

discussion of single-step methods for ordinary differential
equations.

Theorem: Suppose (3.1) has a solution u(x, t). Let w(r)
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be the "vector" determined by u{x, rk), i.e.

w(iyhe oo, B, rki = u(J{hys ..o, d hs rk).

|
Ld

Assume that (3.11) is a "consistent" approximation to (3.1),
il.e. )

(3.13) w(r+l) = B(r) w(r) + a(r)
and
(3.14) Jate)]| = o™*®)  p > o.

Finally, assume that the family { B(r; h)} is stable for
0L t & Tin the| |[norm.

Then, for all 0 < t < T< ©° of the form t = rk,
we have

(3.15) lw(r) - V(r)|= o(xP).
Proof: Let E(r) = w(r) - V(r). Then, from (3.13) we have
B(r) E(r) + a(r)

B(r) B{r-1) E(r-1) + B(r) a(r-1) + a(r)
B{rj B(r-1} ... B{0) « E(0) +

E(r+1)

I

r . -
Y [B{r) B{r-1) ... B(3)] A(3-1) + A(x).

J=2
Since the family {B(r; h)? is stable, and E(O) = O, we have
HE(P)H < K-r-0(kP) = k(rk) 0(kP).
that is

“E(r)liééﬂKT - 0{KP),

Thus we have shown that, under reasonable conditions,

719



Special Computation Procedures. 19.

stability implies convergence. A natural question 1s --

what about the converse? In the appropriate theoretical
setup, the answer is that stability 1s 1n fact also necessary
for convergence. Let me refer you to the excellent book

by Richtmyer [4]. Of course, as a practical matter,
stability is absolutely essential!

In general, there 1s no obvious way to determine the
stability or instability of a difference scheme. However,
in some cases We can get a grip on these ideas. And,
these precise results lead to relatively good rules of
thumb.

Consider the case where P(x, t; D) has constant coef-
ficients. That is

) ‘
(3.16) E;%-: P(D) u . {
R )
i é% Fh b .+ = NV, 2}
1TEoTe - n—ﬂ T =T IHU
f x,1...x
‘ 1l n
where the A are constant matrices.
Qlooo,en

Moreover, let us assume that the difference equation
(3.11) takes the form

(3.17) Y(r+l) = BV (r)

where B is a fixed operation. More specifically, we assume

720
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(3.18)  V{3yhys -os Iy pien) =

' B
ZIQI|+ AR TR VAN L R

V[(3+8) hy, ooos (3,%,) hos vk
where the B[ ] are constant matrices. Conslder the
l, LY n
matrix-valued function
‘12: (2}
Il MR

(319) %(61’ 62’ T en) = ZBLIZQ...Zn

A rather straightforward application of Fourier analysis,
which can be done in several ways, leads to the following
conclusion: Let the norm be chosen as in (3.9b). Then

L R N VA CUE SN [
el<m
wherell ”F represents the finite-dimensional matrix nomm

r
of Y (91’ O oy en).

Thus, our problem has been reduced.to a finlte-dimen-
sional problem. This problem is still not trivial. In fact,
it is sometimes rather messy. However, we do have a method
of analysis.

Let us return to our earller examples. Consider the
equations (3.2) and the difference equations (A.) and (B.).
In case (A.), we use equation (3.3) and find that

Ae) = (1+N) - Aet®.

and
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B (M) = (1+2A)
|85 || = (1+2A)F —P>°as r —poo, k< T

if A 1s a constant. Thus the nonconvergent method (A.)
is unstable.

In case (B.) we find that

/() = (1-A) + Ae 1@
|/3(0)| 2

1 - A (1-cos8) NG sin26
[ J7+ A

2

1 - 2A(1-cos®) + ,X?(l-Zcose + cos“0) +

)? sin®e

1+ 2A(A-1) (1-cose)

Since 1l-cos® > 0, MAX M(e) I <. 1 if and only if A<,
And, in this case, MAX |47 (e)| = max |4(e)|".

Turning now to the heat equation (3.6) and the re-
lated difference equation, we find that

A
4(8) =1 + 2~(—A—;)2 (1-cose).

Thus /4 () 1s real, 4 (6) £ 1, and 4 (6) > -1 if and only
if (3.7) holds.

Well, this 1s a fine analysis. But what about the
general problem of differential equations and a fortiori
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difference equatlons with variable coefficients. 1In the
general case; we have the following rule of thumb: For
each value (x5 tg)s 0'§;_to <_ T, consider the differen-
tial equation and difference equations with all toefficlents
evaluated at (xg, to). These difference equations are of
the form we have analyzed. And, if for (xo,.to) the cor-
responding difference equations are "stable", then they

‘are also stable in‘the variable coefficient case.

The validity of the above rule of thumb has not been
established in complete generality. However, there are
some falrly general results justifying this procedure.

Before proceeding, let us point out that if, with a
finite difference equation of the form (3.11) which we
write for short

V(I"*‘l) =B V(I’),
we gssoclate the norm

”v(r)”2 =h.* h, -h

1 5 . §:|v(..., r)|2,

3’
then

(3.20) ||B|| = Supu—,Bl—g-H = max “g(el, cees en)||F?

wherell “F is as before.

Let us now consider as a further example the wave
equation

(3.21) =
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We try the difference scheme

n+1l n n-1 n n n
Vie - 2vk + Vi _ Vk-l - 2vk + Viesl
2 - 2 ’
(At) (Ax)

n

where we write v(kAx, nAt) = V- We transform the

difference equation to

n+tl _ ,.n n-1 2,.n n n
(3.22) Vi =2y - v+ )\ (Vk—l - 2v, + Vk+l)’

where we have put ;\== [&t/[&x. We could use a geometric
argument to establish stabllity criteria, since we already
know that the solution of {3.21) is U = f(x+t) + g(x-t).

The domain of dependence argument tells us that for stability
we must have A << 1. It is important to recognize, however,
that (3.22) is not of the form (3.11). The time dependence
is on the nth and the n-1th values.

To avoid this difficulty, we write (3.22) as the system

(3.23) wot = vlr{‘

n+l _ 2, n n 2y . n n
v = A (vie_p + Vk+l) + 2(1- A%)v - W .

To compute /8(6))(3.19))write the /z-matrixb

(3.24) 0 1

ﬁ? =

-1 2(1-A%) + 2 A\%coso |.

It's possible to show that “/ér(e)IISE K, but we will not
do it. Instead we will prove the necessary condition for
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the truth of this condition; i.e., the eigenvalues are
less than or equal to one in absolute value. The eigenvalues /LL
must satisfy

2 2 ]
(3.25) M= - 2[1-A (l-cose)]/u_+ 1= 0.
It follows immediately that the product of /U- + and
/U_ must equal 1; if the roots are real, then they are
elther +1 or -1, or one 1s larger than the other in absolute

value. Complex roots can only be one in magnitude. This
leads to the condition

{l - >\2(l—cos6)} 2L 1,
or .
(3.6) -1<1 - \®(1-cose) & 1,
which is true if and only if A< 1.

By another approach, assume the solution of (3.22)
1s of the form »

(3.27) 2 =/Anei(kAx)e ___/aneike (Ax = 1).
Substituting into (3.22) gives
n+l n n-1 2, n| 16 ie
/[,(, —2/0- + U =;\/ll[e -2+e}.
Factoring /un gives
(3.28) %2 - 2[1 + ?\.2(cose-1)] ot 1=0,

which is identical to (3.25).
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IV. Practical Problems in Partial Differential Equations.

Consider the heat equation (3.6), but ask that it be
satisfied in

Oé—_xélg t>o’

with conditions given

U(x, 0) = £{x) 0& x £1
(4.1) U(o, t) = g(t)
U(1, t) = n(t). t >0

In the notation of (3.22), write the following family of
difference equations:

n+1l n n n n n+l n+1l n+1
Yk Tk o kel T %k Vi (l_d)vk-l - eV Tt Vi
- 3

At (Ax)® (Ax)?

where A-:— At/(Ax)z and 0 << A& 1. Rewriting, we
obtain

(4.2) -1Vt + [1 4 2(2-0) Al - Alr-oOvly =

n n n n
A ;\ [Vk-l - 2v + Vk+l] + Vi

which, when applied to a system of mesh points, ylelds a
tri-dlagonal system of linear equations in terms of the
known boundary conditions, which can be solved for any X .
Is the system stable?

As before, assume the solution of (4.2) is
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n _ ,n_1k®o
Vi —-ﬁ? e .

We then obtain

1 QO(P\ O-1
(4.3) Vi Z(l-ot)({%i-cogﬂ'

It's clear that 4 < 1 for all X , A, 6. To meet
the stabllity condition‘égfg -1, 1t 1s necessary and
sufficient that

(4.4) (25-1) A £ 1/2
Note that if A £ 1/2, (4.4) is no restriction on A\, since
is always > 0; if o< > 1/2, on the other hand, A\ is

restricted.

To study the stability and convergence of (4.2),
you must make a. detailed study of the tri-diagonal matrix

in an equation for the error, and this glives the same result
as (4.4).

We now have a whole family of finite difference equa-
tions in terms of one parameter to solve (3.6), and in
particular, if we take ol < 1/2, the equations'are un-
conditionally stable,

To prove the convergence of the method foz'cK = 0,
consider

n+l n _ n+l n+1 n+1
(4.5) - e =\ [Vk-l - e ot Vk+1]

and study Max v[.''. Then k = O or M = 1/Ax, 1.e.,
K
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n+l A . n o~ n+l1
Max Vi oceurs on the boundary, or Ve =V . Suppose
K .
n+l

Max v~ 1is not on the boundary. At the interior point
k : ‘

n+l .
where vk is a maximum;

n+l n+l n-1 -
Vel ” 2vk V= 0.
Then, since A\ >0, vlr{“"l < vi. Similarly, Min vﬁ*l 1s .
| k
true for k = 0 or M = 1/Ax or VE < Vﬁ+l. From these

two statements together, it follows that

L n
(4.6) . é;MiXA_ . lvk |é; Maxl ri,| gl, h‘
k
for O nAt

oéx < 1,
which 1is the stabillity condition.

To see that this insures convergence, conslider the
error equation

n+1l n _ n+1 n+1 n+1
(4.7) R A [Ek-l C e T tE k+1] + 0 ks
where (fﬂ £ L(Z&t)l+p and Eg = 0, Eg = Eﬁ = 0. Let
Max Eﬁ+1 - Eg+1, If § £ 0, § #M, then
+
(n.8)  |er +]op

by arguments similar to those used to prove (4.6). Now it
is straightforward to show by continued inequalitles that
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n+1 n 1+p
(499? Mix E, é_Mﬁx ‘Ekl + LAt‘ s

and thus convergence 1s assured.

As an example of a two-dimensional problem, consider
the heat equation

3u 2% . o%
4,10 =
( ) ot ax2

for t 0, and (x, y) in some region R. The initial and
d

-3
4

)

arv conditione arae written in

fo]
J WAL e VNS L NS A dVUT @

If we write v© , for v(kAx, jAy, n/At), we get the

k,J
difference equation

n+1 n-1
(4.11) Vie.] ™ Yk, 4 _ Vi-1, 3 Ve 3+ Vierl, .\

A* (Ax)

Vi,i-1 T Ve, 3 Y Ve,

(Ay)®

The superscripts on the right-hand side have deliberately
been omitted. If we put the superscript n+l on each term,
we could prove a Min-Max principle similar to (4.6) and
the corresponding convergence results, but the resulting
system of equations, when applied to a problem, are un-
tenable, To avoid this, consider the case of (4.11)
written as

n+2 n+1l n+1 n+1l n+l
(4.12) Vi.i " Vk.i = Vk-1,1 " 2vk{1_f Vie-1,1 +
A® (Ax)?
n+2 +2 n+2
729 Vi, §-1 " ?V?c,,j Ve o3+l
(Ay)®

~ e Vs mnas £ 4\
oI 1alagous to (4.1).
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where the superscript changes are obvious. This gives a
tri-diagonal system which must be inverted for each value
of k. Note carefully the difference in (4.11) written as
n+1 n+l n+1

n+1 n-1
(B.13) ey - Y,y o Ykel,0 T Pt Vienl,y

At (Ax)®

n n n
Vk,g-1 " 2Vk,g Yk, gH1
(Ay)

The use of (4.12), combined with (4.13), forms the well
known alternating direction method, which is stable and
therefore converges, provided Zﬁt is given the same value
for every pair of steps. The proof of stability is similar
to that used for (4.2).

To illustrate a practical problem involving an elliptic
equation, a boundary value problem, consider

= f{x, y) in a region R

2 2
(y.10) 29,970
_ Ix cy

with U = g(x, y) on the boundary of R.

As a first step, we must pick Ax and Ay, i.e., set up a
basic lattice in K.

To accomodate the boundary by means of the basic
mesh, We can either modify the boundary to fit the mesh,
i.e., use only mesh points which are within the boundary
and estimate the influence of the boundary on the nearest
interior mesh point by interpolation, for example; or we
can modify our difference equation for interior points to
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account for different mesh lengths near the boundary.
Let us assume that we take the former method. Then we
have the following formulation: If (kAx, JAy) is an
interior point, )

-2 +
Vk,%’ Yk-1,1 -

(Ax)

Vv
(r.15)  A) = Kl

Vk)j—l - 2

Yo d Vi, g1 _ .
(AY)Z £sd

Iif kZ&x, j[ﬁy is a boundary point, then v

3 1s known.

Most of the effort in research ilnvolving (4.15) is
in finding methods for solving the resulting llnear systems,
However, it is easy to prove convergence of (4.15) as
follows:

Observe that if f , > O for all k,J, then the maxi-
mum of Vk,j is assumed on the boundary. The proof 1is by
contradiction. Suppose the maximum 1s interior. Then,
if i1t is at the point k,j, the left-hand side of (4.15) is
less than zero. But f(x, y)_;} O. Then (4.15) is satis-
fied only if both sides are zero. Extending consideration
tc the boundary points and noting that (4.15) expresses
the fact that v

KsyJ

points, it is clear that the maximum of vk j cannot
L]

occur in the interior of R without a contradiction.

is an average of its four neighboring

Similar results follow for fk J:éé O in R. We conclude
9

that Min Vie 3 must occur on the boundary. These results
2
already imply the existence of a solution of the equations
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(4.15). We have a linear system of equations in as many
unknowns for which elther there is always a solution, or
there exists a nontrivial solution of the homogeneous
equation. But there is no such nontrivial solution, in
view of the above results.

If the function f({x, y) changes sign, let

(4.16)  w = (xAx)® * (J‘Ay)2

which is defined everywhere. We find that
(4.17) Agw =1,

Let F = Max and v be a solution of Z&hy = f. 'Then

(4.18) A, (WF - u) > 0,

which implies that Max (wF - v) occurs on-the

) £ (PZ/M)F + Max lv
bdy

is at least the radius of the smallest circle which en-

closes R. Similarly, we can show that A (v - wF) &< 0,

and hence Max !v I zi_ Cr F + Max | l, and convergence
bdy

boundary. But Max

(vk 3 , Where r
3

is assured.
V. Inversion of a Matrix.

In general we have large matrices to invert. How do
we invert them? Let us write a typical matrix in a par-

ticular structural form. This will be significant in what
follows., Write the matrix V = (Vij) as a vector:
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(5.1) v, vlj
V = V2 where VJ = sz
Vn VlJ ’

i.e., we arrange everything by lines. VJ is the vector
of unknowns in the jth line of any of the typlcal linear
systems discussed above. Then the problem takes the form

(5.2) AV = k
where A 1s a matrix, V is the vector of unknowns (5.1), and
k is a vector of known values arising from the boundary

conditions.

The matrix A has the following structure:

(5.3) D, Fy o
E, D, F,
A= ‘ . . =D+ E + F.
'F
O m-l
E Dy

It is a block tri-diagonal matrlx, which can be written as
the sum of three matrices, D, E, and F, as in (5.3). The

matrices DJ are again tri-diagonal, and therefore are par-
ticularly easy to invert.

An iterative method for finding the solution of a
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problem written in the form (5.2) 1s to write
A=P -~ N,

assuming the Pul is easily inverted and A 1s nonsingular.
(5.2) becomes

(5.4) PV = NV + k,

and we obtain an iterative equation by placing superscripts
as shown: ‘

(5.5) py(V*1) (V) 4 .

If we define the error E\ V) = v(V) _ v, (5.4) anda (5.5)

give
(5.6) gl V+1) _ (p-1y)V +1g(0)

From this it follows that the iterative method will be
convergent if Max l?\] <:_1 for a11‘>\ which are elgen-
values of P-lNQ which 1s equivalent to: For all 7\ such
that det {%P—N} = 0.

The value of 7\9 if either of these conditions is
satisfied, enables us to estimate the "cost" of alternative
methods of iteration. Suppose we have two iteration

schemes: a) A = P, - Ny with error Eélj) and ;\O =

Max ‘eigenvalue of PalN0 lénd b) A = P, - N, with error

Then it can be

(v) .. _ - -1 |
El and ?\l = Max |eigenvalue of P1 Nl'

shown that

(5.7)  |= V“)H ~ >\£*1 e k=0 or 1.
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Then, taking the logarithm of (5.7),

(5.8) ( 5L V¥ )
1o - .
RNER

log k’

Y+ 1,

which tells us how many iterations it would take to accom-
plish a fixed-ratio decrease in the norm of the error.
It is therefore important to be able to estimate the value

of A.

To apply iteration to ocur problem, write P = D and
N = -(E + F), and we obtain what- 1s known. as the Jacobil
block iteration method: '

(5.9) vV o (54 vl V) 4k

As an alternative but closely related method, consider
the Successlve Over-Relaxation method -- S.0.R. Here

P =£:’-(D + WE)
N = &-,[(1-(0) D - uF],

where W 1s some real number. This gives the iteration
scheme

(5.10) (D + wE)v{VU*L) _ [(1-w) D +u)F]V(U) +wk.

The major problem in eath of the formulae (5. 10) and (5 9)
is the inversion of the DJ.
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There is a relationship between the eigenvalues
associated with each of the above methods which is shown
in the following:

Theorem: Let ;X = Max \eigenvalue of Jacobi method | and
let /1 = Max |eigenva1ue of S.0.R. method|. Then

(/,( + W - 1)2 = 7\2m2/u.

Proof: ?N arises as a root of

(5.11) N, F, .
E, N\D, F,
. a =O,
0 ] Fm-l
E. AD,
and//{ is a root of
(5.12) 0W-1
w1 Fy o
+w-1 -
MEo 5= D,
. = 0.
+W0-1
PEq o Pm

Forming the matrix
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1
oL 0
2
A
() = .
0 c* m-1

and computing, T(C*)I°Q"Tzé<)” where Q 1s the determinant
(5.12), we obtain

+HJ-1

—~— D o F
w

1
+W-1 -
PAES AL, S,

which we call Qo.

N°W|O\I|Q0 =l A (JHWwi)Dl Fy
CX?/LEm '
Fm—l

Dm L]

dz/u}?m 0((/[,{:}00—1)

If we put cx?/x = 1 and compare this to (5.11), we have the
result stated in the Theorem. There are two interesting

cases to consider in the S.0.R. Method.
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Case {1}). W = 1. Then /L(= ?\2, and the S.0.R.
method is seen to be superior to Jacobi because a) there is
a reduced computer storage requirement, and b) this method
is approximately twice as fast as Jacobi, in view of (5.8).

Case (1i). W = optimum value = wy and 1s such that

Lo £ :
1 <= w £=2. This gives//Loptléi.l in general.

Now for the finite differénce equation for the La-
placian operator, A is positive definite, and D .is positive
definite. Thus the Jacobi‘method elgenvalue

A= Max | ((E + F)x§ x)|
X ‘ s X ?
or, in terms of the results for general iterative methods,

= Max |(x, x)| _ Ma | (g, x) |
A Rl 0 o o S G ¢ w0 R 1w g HRSNR

and, since we know (NX, X) :> O, the method 1s always
convergent.

To conclude; let us consider the alternating direc-
tion method, discussed earlier, as applied to the elliptic

equation.

Let us define the matrices H and V such that
(Hu)kgj = "guk—l,,j ~ 2uk"j + uk+1,3}

(Vu)ksj - -§uk:3"'l b guk’j + uk‘:J"'l} )

Then equation (4.14) can be written in the form
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(5.13) (exH + eyv)x = K,

A 2 A <2
where ex = = N 6 = ) 5
2(Ax® + Ay9) Yo 2(Ax" + Ay®)
and X is a vector of unknowns. Writing (5.13) as
(Hl + vl)x = K, we see our aim is to invert the matrix

H1 + Vl’ a positive definite matrix, and Hl and Vl are
positive definite themselves. To do this, put

(H, + p1)U™L/2 _ (p1 v U™ + K
(v, + P02 o (p1 Hl)u““’l/2 + K,

with r > 0. The true solution satisfies both of these
equations for any value of r. In fact, we could change
r after any two cycles. The error satisfies

m+1

E" = (v + rI)7h (oI - Hy) (B + rI) 7l (eI - V))E" = W E™

The dominant eigenvalue of Wm can be estimated in two par-
ticular cases.

Case I. If the region R is a rectangle, H and V
commute, and thus every eigenvalue of Wm is of the form

(I' - Vk) . (I' = hj)’
(vk -r) (hJ + r)

which 1s always less than or equal to 1, since each factor
is less than one.

Case II. If R 1s not a rectangle, we must fix the
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value of r, which fixes the value of W. Then

(eI + Vv )W(rL + V)" = W

l? 0

has the same eigenvalues as W, but
Wy = [(ex - 1) (e + 1)) (o1 - v)) ez + v
0 1 1 1 1 ’

The terms in both brackets commute separately, and thus
we conclude, as above: The method 1s convergent.
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Introduction

The n-body problem is generally concerned with the motion of masses

My « o oy M (n>1), moving in inertial spece under the attraction of

J
upon by mass m we illustrate the geometry in Figure 1.

(

their gravitional forces. In the case of a particle m, being acted

Figure 1.

With position vectors Ij and Tyo the differential equation of
motion due to the force on the jth particle by the kthmass is
n
oy m_ r, =r
mor =Y ik % % , (k=1,... n) (1)
=L .2 Ty
e Tk

assuning the initial position and velocity are given, i.e., Ty (0),
Yy (0) ana rjk7>0, we seek a solution of (1). To realize what consti-
tutes a solution to a differntial equation, recall the problem

- 2(x, ¥,

vhere we seek a solution such that Yo = g(xo) for a predetermined
point and in general y = g(x, c). Obviously to find ¢ we solve Yo = g(xo, c)o
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However, in actuality we solve g(x, y, ¢) = 0, with g(xo, Yo c) = 0.
Solving for ¢ we find an implicit solution relating x and y. For exam-

ple, consider

dy - 2% + yexy cos exy

dx =y X

with solution
x2 + sin exy +y = Co,

The latter equation is & solution in the sense that if it is differen-
tiated you get the former. Actually such a solution serves no useful
purpose unless there exists some transparency that makes it more use-
ful.

Further, assume there exists a set of differential equations

&t y) , E=elxv)

with initial conditions x(0) and y(0) given. The problem is to find
solutions x = x(t) and y = y(t) satisfying the differential equations
and the initial conditions. Simple division of these equations eli-

minates the varisble t and yields dy ) where y = g(x). Here
dx

= hix, y

we have managed to reduce the system by one, and there is a chance that
if the solution is transparent the reduction is useful. Thus mathemati-
cians were led to look for integrals to systems of differential equations.
Returning to equation (l), the idea is to reduce it to a system of

first order differential equations of the form

E'E- = fk(x’ e o ey Xn) F) Where k

L « v ,m , X = Xk(t) (2)
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and xK(O) given for k = 1, . . ., m. The order of (2) is 6n, with

m = 6n.

Assume f(xl, s Xy t) is an integral of the system if
every solution of the system gives '

f [:&(t), . e e xm(t), t] = constant, (3)
where the constant is determined by

£ [xl(t), e e x (1), t] =f [initial values] .
is an licit solution of {2) in the sense that if

fk[xl(t), e o x (1), t] =f [initial values] k=1, « . ., m,
there exist m equations in n unknowns for which we can solve )5{ =
X (t, initiel conditions), and the problem is solved in terms of t

and the initial conditions.

Illustrative Central Force Problem

Consider the 2-body problem, n = 2; 12 integrals, with masses
moving in a field subject to the inverse square law.

¥

P m:;‘. = - m"': or
=N 2 T 2
L
é‘:z -73&_]_:'_ ° (Ll-)
Figure 2.
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Using laplace's method, (l4) becomes

o (5)

2 * 4
Recalling that r = g? and rr = ' I, (5) can be written as

so

-(zxg)xz‘(zxx)xa . (6)

dt r /L

v = h; we have

l
AN L
b
|

n
’.J-
o
o
o

L]
»

s
i
o
5
Q

Lo}
b

z
r

(3 integrals) (1)

Integrating the extremes of (6) and (7), we have

r -hxy

- - e or

T o =~

r v xh (3 integrals) (8)
—tes= (e has 3 components).

s

However, the problem is not complete since

T " I (xl, RN xn) has solutions of the form

fk(xl? f e e X t) = constant, ©

and there exists at least one function in which t appears explicitly.
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But the 6 integrals in (7) and (8) contain no such function, implying
e and h are not independent of each other. That is,

e-h=0:§eh +eghy +echy = 0,

Thus, in fact, (8) yields but 2 integrals, with the sixth, the time

of perihelion passage, still missing.

Returning to the original problem of 2 bodies, with neither
body at the origin, we have 12 integrals for the system

m p oy - T
. 1 " H (9)
MO T T T
Tio ryo
I - - . (10)
Iy = .2 To
12

Adding (9) and (10) yields
mI) tmp, =0 . (11)

1
'Izefine r, (center of mass) = T (ml_x;l + m2£2)’ and M = m, +m,, so that

-I-‘-c = 0. This last equation indicates the center of mass is not accelerat=-

ing. Integrating to get the velocity of the center of mass,

|} (3 integrals, conservation of linear momentum)

v
—

Lt + k(3 integrals)

by
=

Multiplying (9) by xr, end (10) vy xr, and adding, e get
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1
o

m (zy xx) +mpy (zp xxpy) =
Integration yields

ml(;'_l x _\_r_l) + me(;;2 X 12) =h (3 integrals, total angular

momentum)

Now multiply (9) by 'L, (10) by »iz and add.

e qa MM

Ip "L vy " I =g 2

Integrating, we have

2y Ty
o) ===

+ m. v
2 12

!'-(m v
2 11

Subtracting (9) from (10) to get the equation of motion of the

second particle with respect to the first, we have

T,-ty = (- - (14)
T12

Let r =r, - r, and /LL =m, +m, so that (14) becomes

?_r: = - 7% r (Central force problem) (15)

(12)

+ E. (1 integral, conservation: of energy) . (13)
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Central Force Problem T.

Since we now have more than 12 integrals, some must be redundant, and

can be reduced to the following:

v,=1 (3)
r,=Rt+k (3)
m(r; +v,)) +m(r, +v,) =1 (3) (16)
Kopd +5pd) - 22 v 2 w
=Nt (2)

Returning to the problem of the time of perihelion passage,

operating on both sides of the last equation in (16) by °r we have

which can be rewritten as

2
rz_.ll_l.é'(_’__ (17)

1l +e cos

vhich is the polar equation of a conic section with major axis along

e, and W the angle between e and r.
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Finally, squaring the last equation in (16) we have

2 2 2
A A )

This is the conservation of energy statement, with hyperbolic motion for

e > 1, parebolic for e? = 1, elliptic for e®> 1l and h £0.

Since |z_a_ - b

2
1'21'2+h2=r2v2 or % (}2+I_1_2_) =*7é(—+E.
r

| 24 | a x 13, 2. aabe, substituting r and v we have

2

v ; _ . - _ -
But = 7%- + E is valid even if h = O, since r = -7%— r.
Without integrating, (18) shows
1 h2 Z
55 = 7?‘- + E. (19)
r
Multiplying (19) by r2, vhere r = |r, - r, |, ve have
1.2 » 2
5h” = LT+ Er (20)

From (20) we see that if r —» 0, ﬁh = 0. 1In the n-body problem,
all bodies cannot collide simultaneously unless the total angular momen-

tum is O.
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Central Force Problem 9.
Multiplying (18) by 21'2 and simplifying, we have
(rz")2 +1° = 2(/1,4_r + Era) (21)
Iet r = a(l - e cosW) so that t = t, + c(w -e sin W)-. (22)
(22) shows that r and t can be expressed parametrically as functions of

w.

However, using an analytic approach, let

'p.

L]
r =

N

ar
d/u, t

so (21) becomes

2 2
(r %‘b&) ‘ng + h2 = 2(/u,r + Erg). (23)

2

= k° and change variasbles so that & o4 o, (r' =4

d
Iet (ra’t& d/,L d/u,

Differentiating (23),

2k2r’r" =2y 7'+ 4Brr', and

Pr" = 2 4 + kEr, with solution of the form
r=A+Bcos/u. s k= |2E|

To findtasafunctionof/u. ,r%=k, ordt=%rd/u_, so that

t=klfrd/u,

In the three body problem, either




Central Force Problem 10.
a) none of the bodies collide. (n # 0)
b) +two bodies collide. (h £ 0)
¢) all three collide. (h = 0)

If two collide, introduce appropriate time variables such that there

exist solutions without singularities.

t
/A.=-]- u dt
Problems:

1) If h = 0, find the time of collision in terms of the initial
conditions for the 2 boedy problem.

2) Assuming l} law, show collision can occur even if h £0.
r

3) Define U = 7§£-and E<0, h # 0, prove

b
lfo W T)aT = - 2.

p
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lecture Two 11.
Recalling the equation

(rr')2 + 12 = Z/u T + 2Er2, vhere (1)

2 2
-1) d U

k2r'2+h2=2/u.r+2Er2. (2)

Differentiating (2) and dividing by 2r' yields
2 1
kK" = /u., + 2Br . (3)

For the case where E = O in (3), arbitrarily choose k2 = o, 80 that

2
k2r"=/u, a.ndr=7£2=—+..., (4)
3
t=7%—-+..., (5)

and ve obviously have parabolic motion.

For E <0, choose K = 2 IE ', yielding r" + r = 7& .

k2
Thus r=7e§-+Acos(w-B).
k
éince k = x%— » choose B = 0 so.we have
r=/45-2-+Acos/(4, (6)
k
t=/bL+csin/u.. (Note:t=frd/u..) (7




Lecture Two 12.

For E 70, choose k2 = 2E, yielding finally

r=7%+Acosh/(,{, (8)
k
t=sinp M. (9)

Let us now discuss two basic problems of interest in the two body
problem:

1) For those orbits in which the masses are separating as t—3°%,
how large is r?

2) If h =0, and for some time t = t., a collision occurs, how

1

small is r?

Considering these problems in the order presented, from

(4) ana (5), r ~t2/3 for E = 0O,
(8) ana (9), re~t for E >0,
(6) and (7), T bounded for E< 0.

Now consider the problem when h = 0 and collision occurs &t t = ¢t
In short, in what way is r releated to (‘t:1 - %) as t—pt . From

0 22

_ - . . . . . X
X = —;:é'— , multiplying by x and integrating, we have 5 = 7‘}%— + E.

1
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Multiplying now by x and taking lim, we find
x*0

1im x%° = 2 y (10)
x—=0

t—’tl

0(
Assume there exists an < such that x N(tl - t) Substitution in

(10) yields

Nzld- -+ \ I"G -t\ » 2> P

X (T 1/ Y% / — /‘*L)
3¢ -2

(¢, - t) —>»2 40, oOr

x ~ (t t)2/3 as t—w»t;

A further interesting property (Bertrand 1873) is that one has a
particle in a circular orbit and the initial conditions are changed,
only the inverse square law (7&2) and the law ( /L(r) will yield a
new closed orbit. In the sola; system under a /a r law, the plenets
would move in elliptic orbits with the sun at the center, and with

a common period.

Let us now discuss the n-body problem under an arbitrary law f(r).

The equations of motion become
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Lecture Two 1h.
ry n .{' = 21{
mT = Y mymy flrg) = (11)
j=1 oK
itk

If f(r) is a real, analytic function, for each r = r,s there exists

a power series expansion of f(ri) in the neighborhood of Ty which satis-
fies (11) and the given initial ccnditions and is unique. Summing

(11) over all values of k,

L mr =0 (12)

1 .
T, TflmEy tmEp t o) 5 I =0, L=k, 5o =kt +h,
note r, = r, - r, but (11) is unchenged, so we have

n
mE =0, Lo omg =0

T s

The order of the system has now been reduced to &n - 6.

If f(r) = r, (11) can be reduced to

r s k=L, o (13)

(13) implies all the masses satisfy the same differential equation, but
fails to recognize that perhaps two of the masses may collide. From

(13), the motion is elliptic or linear, and
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Lecture Two 15.

-:r-_k.—.likcos U\)t+§ksin w t, w:VM (14)

For the situation f(r) = -13 vhere n = 2 or 3, if the solution to
(11) ceases to be analytic at Some time t

For n > 3 the problem remains unsolved.

tl, a collision has occurred.

/
However, Painleve has shown that if in some finite time t = tl’
a singularity occurs, then

min r

=3k
t""‘bl

= 0,

vhere we have g{n_e-_ll distances T

Returning to (11), crossing by I, and integrating we finally get

n
L m(mxy)=h, (15)
k=1

n n

subject to Z mI, = 0 and z myv, = 0. The system has now been

k=1 k=1

reduced to 6n - 9.

For the final reduction, define /u (r) such that /u (r) = -f(r).
Form the self potential

U= Z mjmk/u(rjk)- (16)

1€j4k<n

Relating (16) to (11), we have
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Lecture Two ’ 16.
mT, = grad, U . (17)
Multiplying (17) by ik' and integrating,
n
3 ) mkvi =E+U . (Conservation of energy). (18)
k=1

To specify the constant, and reduce the system to én - 10, for

#(r) = L5, 1ot U (x) f #(r) ar ,
r r

-f; f(r) dr ,
:[:_ f(r) dr .

it
]

f(r)

r, let //1 (r)

[}

f(r)

%, let A (x)
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Lecture Three 17.

To obtain the Lagrange - Jacobi form of I, recall that

and differentiate.

n
oo ve 2
I=% m(me gy
k=1
n L L4
= 2T + z mr I - (1)
k=1
n .o n
But ): O z e grad.kU, 50 we have
k=1 k=1
Ve n
= 2T + 2: I, -gred U . (2)
k=1

A function f(xl,. ..,xm) is homogeneous of order k if there exists 0< )\
such that

AR, AR = AMexp,0m) (3)

Differentiating (3) with respect to P\ , and letting >\ become 1 we
get

= kf (%)

0n
1Mo
»
n
Q
v
o0
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but this is precisely the expression for the coordinates in (2) if

U is homogeneous of order §. 1i.e.

% < du + Y QU + Zy ..%%k_>= Qu. (virial function) (5)

k=1 o% * %
Thus
I =2T +wW. (6)
Consider the effect of letting f(r) = }_ﬁ , - 00l p L2,
r

From the previous lecture, /(,( (r) was defined as follows:

L= ]

/A(r) = f f(r) ar , if it makes sense, which in this case
Y

depends on the value of p. Allowing for various values of p,

o0
ar _ 1 1
pr>l,/((r)=f ar _ 1,
ER SIS
r
r
ar 1 . 1
£ p< 1, (r)=—f & L.l
/a P p-1 rp-l
0
T

If p = 1, /LL(r)

i
[}
oy
R
|
I,
5)
®
Ri=

Thus, if p<lorp >1, /a(r) and consequently U(r) is homogeneous of
d.e 1 - . = Z °
gree (1 - p) (Recall U mam AU (er))
1€ j<k<n
Applying the homogeniety property to (6),

.I.=2T+(1-p)U for f(r) = , p# 1. (7

1
P
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Lecture Three 19.
Since T=U+Eand U=T - E, (7) becomes
I=20+2E+(1L-p)U=(3-p)U+2E=(3-p)T+(p-1)E. (8)

We are now in a position to qualitatively discuss the relationship
between I, U, T and the general geometry of the problem.

Let O be the mass center of this
three body system, and define
R(t) = max. rjk(t)

S(¢)

max. r (t)
k

R r(t) = min. r (t),
J
Cg vhere these functions by their
very definition are not necessarily
rls analytic. The use of inequali-
ties will enable us to relate
m
3 I to these new functions.
n
21 = z mTy
k=1

By definition, each ri < §'2(t)
n 2
=S == Zl , or
L xS
<M ¢2
I1£3 % (t) . (9)

Similarly,

2 2 2
> > = 2 . 3 >
Z mr, =mn Z r —m g where m = min m, Combining this result

with (9),
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gaéxé

nis
v o<

g ® (10)

Inequality (10) tells us I and z 2 are of the same order.

Now how is I related to R? An alternate form for I, valid for the

case where the center of mass is fixed, and useful in this treatment, is

° 2 B 2 o R n
Y omln -z =y mmtry ¥ omo-2y mp-oro . (1)

k=1 k=1 k=1 k=1

But with a fixed center of mass, the last term in (11) vanishes, and

‘E my (zy -£J>2=2I+Mr§ (12)
k=1

Multiplying (12) by m, and summing with respect to J, we finally get

J

Z 2.1 (mjk=mj° mk)

m r =
14j<k<n JF K

2~

But from the definition of R(t),

Ié-éﬁRa(t) Z my OF simply

I <AR%(t) where A 1s a constant. (13)

Applying similar techniques as in (10) we find there are constants Aand
B such that
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Lecture Three 21.
BRO(t) € I <AR(t) (14)

so I is of the order of Rg(t)u A general conclusion is that if for
t—>»a one of the quantities I, R or g’ ——3% oo, they all — <0,

Let us now show the relation between r, Uand T for 1< p < 3.

Since r,, = r, L i > and from the defintion of U,

Jk r,jk T
m
k
_..B.__éU = . < A
= 3 (-0 2L P (12)
j€j<ken ‘P 3k
A conclusion for {15) and the preceding work is that if t —a

one of the quantities = , U; T or I approaches <2 , they all do.

It is impossible for all the bodies to collide simultaneously
after an infinite time. To prove this statement; assume the contrary,
i.e., all r, —% 0 implies R(t) —» 0 for t —» o0,

r —2 0 implies %-———7"’, which implies f————?”. If
I——»<2;, at some time I > 0. For simplicity let

I > A for some t and with A> O.

I>A , integrated twice, ylelds

Alt2
1> 5 + Cit +C

. (16)

But (16) tells us that I —»°=° vhich implies R——%oo from (13).
But this is contrary to our hypothesis.
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Lecture Four 22.

Consider the problem of less than n bodies colliding after some time
t=a. Letn=3, f(r) = }-5 . Then Chazy proved (1923) that it is
impossible for a particulag pair of masses to collide as t —P=¢ if
there exists a quantity § 5 O such
that both remaining distances are
always greater than or equal to §
e, 1, —>»0as t —®»2 ir

there exists ) such that r23 and

r3128> 0.

Figure 1

Pollard Theorem:

Recalling the definitions:

R(t) = max. rjk(t)
g(t) = max. rk(t)
r(t) = min. rjk(t).

Then for n = 0, r(t) —/20 as t —9» 2.

Proof: Assume r—»0. This implies there

exists an rjk-—>o for some particular J

and k. If no particular pair becomes and
remains the minimum pair, this implies at

least two r 3k are alternately the minimum.

Let them be T and r23. Then when they

exchange positions, i.e., Tyn < r23——>

r23< Tps there exists & time t, such Figure 2

=]
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Lecture Four 23.

that r12 = r23. But each time they exchange position, these exists sequence of

i i = . i : < } .
times tn for which Tio r23 But from Figure 1 r3l rio + r23

1 2 2
Thus r31(tn) —>0. Remember the form I = & (m12rl2 + m23r23 may 31) (1)

This implies I(tn)——>0 as rjk—>0. But for r(t) 5> 0, we have shown
I >At2. Following the same logic of yesterday's lecture, we arrive at

a contradiction. Thus if r(t) ——3»0, 8 fixed r, will eventually be-

Jk
come and remain the r(t) of our definition.

From (1) and previous results, assuming it is r.. that becomes the

12
min. so rl2—>0, we have
2
T (111231'23 *mg)T 31) > at%. Assume Ty >m31.
Then
2 2 2
>
m23(r23 + r3l) > At or
2 2 2
23 T3] > Bt . (2)

Now let us show both r,.and r.. are greater than some multiple of t2=

23 31

|r2 73| L Ty TPTyy Ty — 0 Ty, = 2€;

vhere € ——3»0 as t———» oo. Rewriting (2) in terms of Thys Ve have

(r1+2€)2+r32>Bt2 . (3)

3

Since (3) depends on r31, ie., € 2—’-0, (3) can be represented as
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Lecture Four 24,
r2+2€r +€27Bt2, or
31 31
(ry, + € )2 >Bt2ir + €>Ct2 and as € ——» 0
31 31
r3l > Dt.
The same argument applies to 1‘23 as r12~—> 0. Thus both r31 and r23

increase more rapidly than t. From

nf, = —?3(_1:1-1‘)+ (zp - x3)
13 23
m

. 1 T L A

Blelz 25w ®
13 Y23

Integrate (4) between t = t. and t = ty ) Lty

1
s tz
Foat | = rolat<c [ - X
I3 I3 "%
t) t 1 %

However, Cauchy proved that if there exists an f(t), t > 0 such that

f(t ) - f(t )—>0 as t, and t,—>=°, then lim f(t) exists. Applying

1 2

t—ee?

this to (5), 1im Vs ( =©) exists.
t—soo

Now let t,—o0, 50 (5) becomes

vy () -y ()] e g (6)
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Dropping the subscript in (6) and integrating, with t, =1 (arbitrary

choice)

t t
[13 (t) at - Vs (oo)] dt < Vs (t) - ¥s (=2) | at <

1 1
C log t; becomes

< Clog t. (1)

r, (t) ~y, (=)t +c. | <
3 3 1

Divide (7) by t and let t —wo0 . Since 39%—3 and %—»o,

r, (t)
limit———-—)_}%("c)- (8)

t—>oe

m.r,
Since Z m,x, =0, z === =0, the last term of

m,r, + r m
Ti5 T Tofp  Tai3

T
T - 0 vanishes. (9)

mr. -+ iy
Thus 1lim -]-'-—l—-—-l-.i?—g- exists.

t—w-co t

Assuming r, - r, —»0 and dividing by r
_2 "'l ml s

T

=1

Combining (9) and (10) we now have
T1 2

T,
(m1 + m2) %g » T~ end 3= all having limits.
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Since

2 2 2
n.r by m.r
L =—-l—-]-=+m222+—3éi,wenowhave

t2 t2 t
1im 15 exists and is finite. (11)
4 —wo0 ¢

From previous results, for some t > to and AY O,

2
I>%—+Bt+c. (12)

Dividing by 2 and letting t —» <=2, (12) becomes

11m-1—2->%.
t—>t

Since A is arbitrary, let A—»=; so that

L

lim =5

t—=>°t

= 00 .

This implies I increases more rapidly than the quadratic ta, and contra-

dicts (11). Therefore r——/L’O ag t —w»o0 .

In the n-body problem, & simultaneous collision of all n bodies
implies that the total angular momentum is zero. (h = 0).

Proof: 8Such & collision implies R(t)—>0. We have previously shown
R +>O after an infinite time, so there exists a time t = t1< oo at
which the collision must occur; but this is impossible unless h = O.

To prove this last remark, recall
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n
h=y mk(;;kx_w_r_k), so that
k=1

ey mryv - - (13)
k

Since it is true that

|Zab 2 £ Y2 Y
(13) can be written as
thl <= Z (N - S oA
121 = & V% T & V%% Vi), or
2 .~ 2 2
Ip_l \kark kavkahIT. (1)
k k
Using T = T - E, (1L4) becomes
2< " , .
|1_1| < V(I - E) . (15)

Eut at some time t,, I —>0, and R—>»0 —>r—=0. Similarly
I—>0 implies that at some time I > A >0. 8o the plot of I vs.
t must be concave upwards. But this means I< 0, or - I>0. Mul-
tiplying (15) by - I/1,

2|2 (- < - ¥(T - B). (16)
I

Integrating (16) in the neighborhood of tys

v log % < LET - 21° + K. (17)
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But 2i2 is negligible, % —» o0, log %— —> @30 is eventually > O.

Dividing (17) by log %:

ha él+EI+K

for t "t
1
log I

1 -

Now as t—»tl, the denominator —% oo, I —» 0 and the numerator
—’ Ko

2

Thus h~ —0 as t—>»t or

l)
the total angular momentum vanishes if these exists a'simultaneous

collision of all masses.
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Tauberian Theorem and Condition

Consider the problem of & given function f£(x), x> 0 such that
£(x) NAx2, i.e., lim -i:%‘)— = A; and let us question if it is true
X—»0 X

that £'(x) ~2Ax.
The converse statement

£f1(x) vaax —/——p £(x) ~AX® is true, but it is not necessarily
true that given an asymptotic function, one can differentiate with
the result an asymptotic function. It is this irreversibility that
led to the concept of the Tauberian condition, which is that additional
information required to obtain reversibility in the above limits.

1
lim fzxx = A —)there exists € >O and an x, such that
X—woo
£'{x
- -A L€ es x—ax,. (1)

Multiply (1) by 2x, integrate with respect to x, divide by x° and let

X —»oO,

|50 a4 (2
X—° ] x

Since € 1is arbitrary, let € —0 so (2) becames

111:13’%l =A or f£(x)~A%. (3)

X—° X

Now, to show f(x)NAx2 —f'(x) "v2Ax we must introduce a Tauberian
condition.
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Landau Theorem (1906)

Case 1. A =0. If f(x)f\JAxe, and f"(x)=C - <o, then f'(x) ~V2AX.
>~
Consider f(x + € x), €-=-0, and its expansion in Taylor series

with a remeinder, up to second order terms.
é2}{2
f(x + €x) = f(x) + Exf'(x)+-——-é———f"(§), x<%<x+€x.(h)

Using Landau's Theorem in (U4),

2.2
Hx+ € x)Ze(x) + Exe'(x) + X . ¢ (5)

Dividing (5) by x> and taking lim as x — =2, we have left

0=1lim
X —»ob

, 2
S, L. (6)

In (6), for € > 0, divide by € and let € —» 0 so (6) becomes

Tm %) oo, (7)
x S—

X =0

In (6), for € { 0, divide by € , (reverse inequality) and (6) becomes

Lim £1(x) > 0. (8)

X —woo X

But (7) and (8) imply

f'(x
1im Sy = 0

X —wc0
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The same conclusion can be reached for f"(x)< C < °° by using

-f for f in the above argument.

Case 2. A £ 0. Define g(x) such that g(x) = f(x) - Ax2, so that

€080, 2

X X

The hypothesis f(x)f\/sz :}d%)- —3>0.
x

"t
From (9), E—gﬁ = £"(x) - 2A, where f"(x) >C > - «
x

But the argument for the case A = O now applies to g"(x), so

1im 5-2—%’9- = 0. (10)
x—-OO
By definition, g'{x) = £'(x) - 2AX, so that
8(x) _ (g -
s =T (x) - A. (11)
Using (10) and (11), £'(x)~ 2AX

von Clausius' Theorem [f(r) = —]-'5}
r

If a system is bounded in size and velocity, then both the kinetic

energy and potential energy have limits in the average sense. i.e.

N
U=1imf U dt = - 2B, (12)
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%
Fal
=limedt=-En (13)
t —»D 0

(Classical Virial).

Proof: If (12) is true, (13) follows, since

TaY
T=U+E, and since E is constant is equal to its average value.
Ia) A
Thus 'i‘ = U+ E. In words, T is redundant in view of the conservation

of energy.

Now to establish (12). Begin with the Lagrange - Jacobi identity
‘I. = U + 2E, integrate once and divide by t.

Udt + 2B + — .

ctjH «
]
o=

. n
Remembering I = Z m (E-k v_k), from the hypothesis of bounded

k=1 [
r, and v, I is bounded in time. Thus, as t ——woo, %—-»O,
c
"E_’O’ and
t
A "8 1
U=—f U dt = - 2E.
t
0

However, the fact that is some cases, i.e., parabolic case of the two
A
body problem, U = - 2E (= 0) even for an unbounded system, (rNt2/3),

Pollard has developed a stronger theorem.

2
r

Pollard Theorem [f(r) = ~—]’-]
A necessary and sufficient condition that U exist and equal - 2E

is that 1lim li%jc_l = 0. In other words, if the system is bounded (note:
t >
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R(t)

A
% —>»0 and U = - ZE.

velocity not involved),

First let us show %-———ro = %——-)O. We have already shown

t
A
=%f Udt+&+%:¢u=-mifandonlyif{-—m.
0

HlH -

1
If 1imf—2¥-c)-= 0, then limﬂ%)- .

X—woo X—»o° X

Applying this to functions I and I,

m—=0_>11m——= (14)

s 't
To prove the reverse of (1L4), we already know that if

L
1imf-(-’9-=0and £f'(x) =>C > - oo, then 1imf—-§52-=o.
2 x

X w00 X -poC

Thus we need to show only that T>C > - oo .

I = U+ 2E =22E >- oo . Thus.]fmaybe integrated to get

I

lim ;E—rO. Thus ﬁ = - 2E if and only if ;IE-—-v-O or -I-é-—-o.

t—se0 t

But earlier we established that

2 2
BR £ I R
2 2T
t
I R R
From this, if =5 —0, ) and E—»O. Thus
t t
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Lecture Five
Y
—= 0, or

A
U=-2Eifandonlyiflimt
1, -

lim%:O, or

E e

1im 2 _ o

1 —poe v
A
Theorem: If T exists and equals O, then E = O.

A A A
Proof: T=U+E, so if T exists, so does U and T = O by hypothesis.

Thus

A A A
T=U+E, or U= - E.

A
But U >0, so ~E=20or ELO0 . (15)
From T = T + E, integration once and division by t gives
, t
I 1 C
t_tf Tat +E+ 3 . (16)
o)
As t——P<0, if T = 0, the integral in (16) must vanish, as does T
(17)

Thus: lim % = E so ifvEt.
t—sc0

Integration of this asymptotic function gives




lecture Five 35

But I >0, so E=0. Combining this result with (15) we have

Incidentally, the theorem is true for all p # 1. What happens if
E< 0? Since T = U + E, and T 20, by hypothesis

U+E=20 or U>-E.

A
Thus U2|E|,but%)U, so%%"El:}rE—Pr. 1t E<Lo0,

r is bounded but the maximum could conceivably —» oo .



Lecture Six 36.

Theorem: IfE >0, n = 3, a particle escapes.
Lemma 1. LEI - .12 £ C as t—>»°°, From the Lagrange - Jacobi
equation T =2F+ U, we conclude I—+c0 85 t —» oo . Thus; for. some

- o (14
time I becomes positive, and define this as I(0). By integrating I,

%
I-= f vaT +28t +I1Id8, or
0

t

I= f (4-T)aT UWT)+Et®+xkt+) (1)
0

Multiplying (1) by 4E, we can write

t
hEI<hEtf W(T)aT + 4842 + bEkt + C, and
0
t
22 2.2
I° > LEt +1+Etf W T)aT + LExt. (2)
0

Reversing the signs (and sense) of (2) we have

YEI - I°< C.
Define J = Z m jkr 5K’ where we now know
i¢j<k<n
BRjk <J< AR,jk

Lemma 2. lim ’ﬁlj" = ) exists.
e
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= m . r_ ., 1< j<X<=n,
Z rjk LER l=s p< g=n.

Differentiating (3) with respect to time,

r.r -r T
' - § § Jk pq pq Jjk
T3k

J

But r,, 2 r by definition, so — 2<%, From (%), with c <U
Jk 7 er = r r

)] < o ) Vg Yo,

Square (5), use Landau's inequality property and note that in the expan-

2
sion of | | we get & middle term

o .2
-2 T.T r r = - LI®,
§ T ikT gk 5k § e pa"pg

Thus (5) becomes

T Tptak | (5)

[(wn) | ? < v (% + ¢) (32> 1%)

Division by U5 J 3 ’

UJ < 1 1.1
&S Co — ¢ em— (6)
555 RS
But £ € Cr, so i <& Thus LX< £ < ¢. This implies X is bounded
U= JYR WS R uJ ’
and will be dropped from (6). Similerly, I >At2 >J2 > At2==>

J > At. Finally (6) can be reduced to
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| (va) ] B
sy T (n

Integration of (7) gives

AN N [P g U S N (8)

But as t, and t, —» 2 independently, the right side of (8) is

bounded, and

1 ) P
-(_1_];-)_37-2_ — > 1im 85 t——»=0 or lim 07 = L

t >0

Assume L >>0. Then, there exists & & > O such that

1 >S;Oast-——>oo.
UJ
%2% > § >0, sor > &R >=Ct. (9)

(9) shows that as t —»o0 , r—e»oo s0 all the particles escape.

Assume | = 0. Then at some time, some T sk (say r12) becomes the mini-

mum, i.e., T, = r. If another r, swaps with r__, each time a new

Jk 12
r,jk becomes the minimum, rip = r23. (Assuming r23 is other minimum).

Then r31 = R. But
‘ T - r3ll §r23, or
‘r - R ‘ér. (10)
732
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Division of (10) by R,

R R 4—soo R

fore there exists a min r jk; call it r12.

= - 1l.g Z . But lim %= = 0, vhich implies |- 1|< 0. There-

Introduce Jacobi coordinates S’ and r, vwhere

S ., .5 TR
— 3 mtm

r=xr,-1r
~=ip "X

+ =
m)Iy *mprp *mgry =0 m,
The above set of equations may be solved to get Iy, Iy and _1_'_3 as linear
functions of r. Such a manupulation would show
I=A32+Br2, (11)

vhere A and B are functions only of the masses.

Letr23=R,r = r. Then R-S\ £ r, or

12

S
R

l1 -

Butifn.—-O,%é-I]i—I- ﬁ%———»l, SrvR.

Since R >Ct, 3 ~v Ct so % becomes unbounded as t —¥» o0 . But
revriting the form for § ,
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r. = Cr

I3 3 - (12)

"M-m

3

Since, ag t —» <0, § —>c0, r,—»0 . This means m, escapes

3 3
from the system.
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lecture Seven 1.

Recalling the general equation of motion
f(rjk)

e (r; - z) s (1)

T = m
N 1 Gcien e

when f(rjk) is a real, analytic function there exists & unique set of
rk(t)s, containing the origin, which satisfies (1). For the case where
f(r) = 15, either all the rk(t)s may be continued analytically as

r
t—»=°, or there is some time t = tl at which at least one r) ceases
to be analytic. Painlevé has shown that the solution of the n - body

problem permits analytic continuation until such time t = tl for which

rk(t)———a—o as t-——a-tl, and that this condition is both necessary and

sufficient.

Returning to the work of Chazy for the case where t—>°=, is

it possible to find estimates for the growth in r(t) with time?
Consider

m,
U = —Jk ,
T ik
. m,r
-U= —J—l‘—aﬂﬁ,but—-l—<%<cu,so
r, Jk
Jk

Cle

I =< CU2 zi: mjkfjk . (2)

As before, we square both sides of (2), recalling the energy equations,
to get
lﬁl 2 < cu'n, (3)

vhere T = U+ E >0.
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Lecture Seven Lo,

IfFE<CO, from%—QCU end T=U+E, r<B< o . (Note that in all

these lectures no effort has been made to distinguish between the vari-

ous constants, i.e., A, B, C, Cl’ etc., since they only depend on the

masses). Thus we have
A>uz g, or r<lEI —>r ~ 0. (1)

IfE =0, T=Uand (3) becomes

[t'J 2 < ov?, or-‘l-%géB. (5)
U

J

Let U = —%—- , differentiate, and substitute in (5) to get 1/ 2 ‘g' < B,

2

3/ £ Ct, but r £C § ﬁ'omé>U L , SO
5 = v £

r ~ct?/3 (6)

If E >0, (3) becomes
. ) '

[UléCU (u + E). (7
Agein let U = -—%—— , 50 (7) can be written in the form

§'2

C 1
-—g—é— < —%T —g—- + E ;3 Or

71736




- A En ¥ En

am W
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Thus %éCt and r< Ct, so
r ~t. (8)

Since we have only worked with Lagrange - Jacobi equation to date 3
let us see what additional information can be obtained from these dif-
ferential equations for the n - body case, where E >0 and 1 #£ O.
Making use of lemma 2 in the last lecture,

I >At2iR >At, so J > At.

1

But o

> § >0 if 1 # 0, so that

Jk
m m

‘e i B

¥, éz “%rjkéi'lééwzé?' (9)
er rjk t

Summarizing Chazy's results for n = 3 and ruling out the case of triple

collision, i.e., h £ 0, we see:

E >0 all rijf\J t ' ;4 0 hyperbolic case
two rijs, say r12
and r23f\/t =0 hyperbolic -
2 /3 parabolic case
r31/\Jt

two rijs, 58y Ty,

and r23—>°<> sy Typs $=0 hyperbolic -
o~ t elliptic case
23

- .
& B (bdd.)

T8 7




Lecture Seven Ly,
E=0 same a5 above hyperbolic -
a1l v~ t2/3 elliptic, or

ij parabolic case.
ELO0 two particles collide, hyperbolic -
the third —soc0 elliptic, or
parebolic -

elliptic case.

Some r., is neither bounded nor unbounded.

Jk
Chazy was able to demonstrate orbits of every type above save for
the very last, but the latest Russian literature indicates this too

has now been demonstrated.

Let us now retwn to the Sundman problem, namely the three body
problem where h # 0, and show that if r-—>»0 as t—»‘tl, this
corresponds to a two particle collision with the third particle

moving to a definite position with a definite velocity.

If r(t)—>0 as t—>t,, U—>s0 T——»c° ., But this tells
us that the curve I vs. t must be concave upward in the neighborhood
of t = tys 80 I—>L, where 0 < L £ ©© . We have already ruled
out the case where I = 0, so we have 0< L £ o©. Let us now show

the 2 particle collision.

If r —»0, a pair of particles collide. Then one of the distances

rij becomes & minimum and remeins so. To prove this, assume r., and r

are alternately the minimum. Then there exists & sequence of times
{tn} » t,—>t, vhere rle(tn) = r23(tn)———>0. But rBlé T1p * Tp3s
80 r31—>0 which implies all three ro j—>0 along this sequence of

tn's. But note that

12 23
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Lecture Seven 4s.

1 2
I -ﬁz mjkrjk s SO

I( tn) —3»0 along this sequence.

We have already proved I has a limit, so if it apprpaches 0 along a
particular sequence of times; it will approach O no matter how you
approach tl. But this is a triple collision, contrary to h ;! 0.

Thus only one r,

i

eventually becomes and stays the minimum.

Now to show that the third particle moves to a definite position
with a definite velocity, return to the inequality O < L < <0, and

let us show we can rule out L = o© when h £0. Ifr —=0, r

12 23 ~

-

- -~

+ n 4
1 T T U \

31

AN\
V)

1 2 2 2
1= ﬁ{mlarle t oy Thy t m311’31} (11)

We know r 2——-»0, so let us assume L = © , or I—»° as t—>t..
M2T12 1

This implies

n r2+m r2
23723 31731

—p 2,
Let m23 > 3> 50 We may write

m23(r2§ + r:ﬁ )—>»=° or

2 2 o
r23 + r3l—v .

From (10), if-r23—->c>0, T, .——» o since

31

Tp3 = T3y + 2¢€ , where € —> 0 as t—>t,, and by squaring,
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Lecture Seven L6.

simplifying, and neglecting vanishing terms

—_—
r3l + E ’O 7 r31 — OO (12)

This implies r23 —_— 0.,

m
1 To )
But3=r3(5_l-;_3)+ (r _z;),so
13 23
. 1
~ I3 < ;—-2- + ;—2- (13)
3 23
Using (12) in (13)
¥, |—>»0 as t—st, 50O
iv3 has & limit as t—>%t,. (14)

Recalling that if a function has a bounded derivative as t—»to » the
function itself has a limit, (14) implies

r . —>»limit as t—»t or

3 1
lim  ry(t) = 1. (15)
t—t
1
However, m,ry +myr, + e 0, amd
m,r, +mr,—>L. (16)
Also, ry,—»0, I, - r,—>0 (17)
790
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Lecture Seven L.

Multiplying (17) by m, and adding to (16)

(ml + m2) r,—>L —))rl, r, and T3 have limits.

But from (11), since I —»L we have & contradiction to the assumption
L= oo.

0<L £ oo,
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Summary of the theorems involved in the Sundman problem, where
n=3,h#0, and r(t)—>»0 as t—>t, L 2.

Theorem 1. 1im I(t) = L, 0L LKoo,
't—»eo
Theorem 2. Two particles collide and the third particle goes to a

definite position with a finite velocity.

Theorem 3. It vy and v, are the velocities of the colliding parti-

cles relative to the origin, then

lim r(t)vi = 2111240(
t——»tl
=m, +m
2 2 TP
lim  r(t)vy = Eml/
t—>t #
1
Theorem k4. The integral
t

f U(T ) 4T , converges. (cf. h = 0 in 2 body case).

Theorem 5. If V is the velocity of my relative to My, then at collision
1im rV=2/u. /a=ml+m2.
t—=t
1
Theorem 6. lim r(ra)" = E/u,
t—t
1
I, - T
Theorem T. lim ﬁ-—;—'i exists.
t—’tl 12

That is, the particles collide at a definite angle.
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Proof that if £(t) > O, f(tl) = 0 and £"(t) >0, then £'(t) <0
in the neighborhood of t = tl.

Iet us expand f(t) about t = t

£ 2
in a Taylor series up to second
order terms.

i £(t,) = f(t ) + (%, - t3)f'(t3) +
' (t, - )2
| t —'—L—}— £( ). (1)
Lot ot
t, £ % < tg
As ty—t., (1) becomes 0O >/f(t3) + (tl - t3)f"(t3) , (2)

vhere vwe have neglected the second order term, which by hypothesis is
positive. From (2)

(1:1 - t3)f'(t3)< 0. But t, - t3>0, so f'(t3) < 0.

Returning to Sundman's problem, consider the velocity of collision.
From Theorem 7.2 in the 1962 lecture notes by Pollard, we have

2

.

J

R

2 2nf
vy, g as t——»tl .
17 T
Proof: Assume Tip =T and recall that
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m m
12 +m23 b3
I‘l2 r

23  T31

U=

Multiply (3) by r and let t—>t,, to obtain

lim rU=m

t——*tl

12°

From (4)

r(t - E)—»mla.

But E is constant, r —>»0, so we can write

2

2 2
rT—n,,, or r(mlv + mve +myv )————>2ml

1 22 3'3

But v,—» 3 —> rv.—>»0, so (5) becomes

3 3
r(m v2) + x( v2)——-—>2m .
171 Vo 12
Since the center of mass is such that
mvy + A + m3v3 = 0,

let us multiply (7) by {r, recall that V3

bine (6) and (7) to get

Fo

N S

17T

B
+

+ HQ)m
=]

(3)

(&)

(5)

(6)

(1)

—>»0, Tr—>0, and com-

(8)

_» .
‘E e

'R W
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Lecture Nine 51.

Let us now find the rate at which the collision takes place.
t

1
Even though r —=0, the 1lim %(—7-——5- is bounded.
Ny 7
Since %NU = l.[ - 2B; I—>» 00 as t———»tl, 50 at some point I becomes
t
positive. Thus, if we show the existence of a limit for f 1 I4aT ,

Y1 a4 T

we have a limit for f 37—)- .

2 2 2
Now, I= myTy + m,T, + m3r3 B
T=m(r-5) +myly vp) + mylzs® ¥y

- — =

Since r, and v, have limits,

3 3
mlvl + m2v2——>0 implies

ma(ze - 1'_1)' veé mzrvg—zmz/v?\/?ve.

But 4 r’v2 has a limit from (8), ¥ r is likewise bounded. Let V = v

_2-V

LR
and combining results, we see that

rv2 —-—-2(m1 + m2)

Proof that r(r2) ..—»Q(ml + m2), where r2 is the square of the vector,

2
d—§ r(r2) = 2r{£- T+ iz} (9)
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Lecture Nine 52 .
B
== (5p- r;) + bdd. fen. (10)
12
.- ml
T, = =5 (z; - xp) +vad. fen. (11)
T12

Subtract (10) from (11).

(X4 m1+m2
T = -~

r+ bdd. fen.

— r3
m, +m
So, r° ‘;‘: - -}—;——2-+bdd. fen.,
2r(r- 1) = -2(m1 + m2) + bdd. fen. (12)

From (9) and (12)

2r {5- T+ ;_2} = - 2(ml + m2) + bdd. fen. + 1J,(m1 + m2) + vanishing

term.
r(x?) —»2(m + m) (13)

Now use this informetion to find the rate at which r—>0 as t—)’cl.

In the two-body problem rm(tl - t)2/3. Can the same be saild of the
three-body problem?

Differentiating r( rz)uas a scalar function, we get
2r(rr + 1"2) .

222
Define F =

» Where both numerator and denominator —»0 as t ——st

Applying L 'HOpital's rule ,

1

M B Tl s



*~

- e A M an G SN ay N N GE ON BN N EE e B -
- [ ]

l

Lecture Nine

2 - o8 ’2 -
lim F = lim 2 (2rT) ; r{orr) _ y4p

t —>t1 t—> tl t —.tl

. lim F=2(ml+m2).

%t ——‘bl

Thus ri‘z——>2(m1 +m) , or

{;f——»iyla(ml +tmy) .
But r—0, so (14) becomes

fr'f—» -4 2(m. +m.) , end
1 P24

0
f Ar'ar ~ - 2m +m) (% - t).
r

Integrating the left side of (15)

2r(:z-'2 + rT)

%r?’/gfv V 2(ml + mg) (tl -t) —r~ (tl - t)a/3

7317
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OUTLINE OF A THEORY OF NON-PERIODIC MOTIONS
IN THE NEIGHBORHCOD OF THE LONG-PERIOD LIBRATIONS
ABOUT THE EQUILATERAL POINTS OF THE
RESTRICTED PROBLEM OF THREE BODIES

by

Professor E. Rabe
University of Cincinnati Observatory
‘ Cincinnati, Ohilo
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Non-Periodic Motions. 1.

I. Introduction.

Subsequent to the recent determination of selected
periodic libration orbits of the Trojan type (Rabe, 1961,
1962) and of the corresponding orbits in the restricted
earth-moon problem (Rabe and Schanzle, 1962), additional
numerical work has been devoted to the study of ﬁgg;
periodic trajectories, 1.e., orbits deviating from a
certain periodic solution by given initial quantities.
Such orbit computations have been limited to the Trojan
problem because of the greater simplicity of these
motions which are based on the relatively small mass
ratic Jupiter/sun. Also the :work has been: limited
to motions in the plane of the periodic orbits, and con-
sequently in the plane of Jupiter's orbit. A number of
selected non-periodic orbits of the Trojan type were thus
obtained in cooperation with J. Schubart, during the'
summer of 1962, on the SIEMENS-2002 electronic computer
at the Astronomisches Rechen-Institut in Heildelberg.

An even more extensive and systematic survey of the pos-
sible forms of motion was undertaken by A. Schanzle
(Dissertation in preparation) on the I.B.M.-1620 of the
University of Cincinnati, for a study of the stabllity
characteristics.

From the rather numerous trajectories, some of which
extend over time intervals of many hundred years, the following
principal features emerged rather clearly. For very small
initial deviations from a periodic solution with the same
value of the Jacobi constant C as the non-periodic orbit,
the latter oscillates in a vine-1like fashion about the
periodic reference orbit, with a principal short perilod of
the order of Jupiter's period of orbital revolution (as
compared to the roughly 13 times longer period of libration).
For increasingly larger initial displacements, however,

ou J
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Non-Periodic Motions. ‘ 2.

the non-periodic orbit detaches itself from the perilodic
one with the same C-value, first in the regions of the

two turning points, describing complete short-period

loops outside of the periodic orbit and increasing in this
manner the effective libration amplitude of the non-
periodic trajectory. The over-all librational behavior

is maintained, but with an increased amplitude depending
on the initial deviation from the periodic orbit. No
indication of real instability 1s observed, even when the
dimensions of the non-periodic "libration" are many times
those of the related periodic orbit. Clearly, however,

the concept of "ordinary stability" does not cover such
phenomena, but a special concept of "librational stability"
may be appropriate. It may be characterized and defined
by one feature which seems to apply to all the observed
non-periodic librational motions: The appearance of
ordinary stability (vine-;ike oscillations about a reference
orbit, without any closed loops outside of 1t) can be
restored by referring the non-periodic trajectory to some
other periodic libration orbit of larger amplitude and with
a correspondingly larger Jacobl constant CO, instead of

to the one with the value C of the non-periodic orbit.

The observed features are those in the rotating
coordinate system of the restricted problem. If the re-
lated heliocentric osculating orbital elements are com-
puted at various points of the librational motion, then
it is found that during the whole libration the semi-major
axis a of the non-periodic Trojan follows rather closely
the long-period fluctuation of the periodic Trojan in that
libration orbit which approximates best the amplitude of
the non-periodic libration. The eccentricity e, however,



Non-Periodic Motions. 3.

fluctuates very little and is roughly proportional to the
amplitude of the principal short-period oscillation in

the rotating frame of reference. 1In this connection it
should be noted that the eccentricity of the periodic
Trojan 1is always very small, or, more precisely, of the
order of the mass ratio [[ of the two finlite masses. The
observed behavior of the elements a and e can be understood
on the basis of the Tisserand criterion

1
14 2la(1 - e2)]? ~

(1)

C
l+li ?
as an approximate equivalent of the Jacobil integral.
With Jupiter's solar distance a' = 1 as the unit of length,
Eq. (1) shows that near a = 1 the required constancy of
the left-hand side 1s indeed compatible with rather sub-
stantial variation of a, in combination with much smaller
variations of e. '

Considering the stability suggested by the numerical
results as described above, it appears desirable to attempt
an analytical representation of these non-periodic motions
in the form of oscillation terms of various periods superim-
posed on a periodic libration as reference or intermediate
orbit. In the Trojan problem as well as‘in the earth-
moon case, such reference orbits are available in the form
of their Fourier series representations, and for the Tro-
Jans they caﬁ be interpolated between the directly computed
periodic orbits (Rabe, 1962) to find any desired periodic
solution within the amplitude range of the real Trojan
planets.

In the theory thus proposed, the basic periodic

802




Non-Periodic Motions. L,

orbit will evidently play the same role as Hill's variation
orbit in the lunar theory. In further analogy, the non-
pericdic Trojan's oscillation about the reference orbit

is approximately proportional to the eccentricity in its
heliocentric orbit, just as the moon's deviation from the
lunar variation orbit is related to its orbital eccentricity.
Here, however, the analogy ends, because the intermediate
TroJjan orbit differs essentially, geometrically as well

as analytically, from Hill's variation orbit. The sharp
curvature and small velocity near the two turning points

of the libration orbit in particular are quite unique
features of the problem at hand. This phenomenon impairs
also the usefulness of the well known second order dif-
ferential equation of Hill for the normal displacement
from the reference orbit, and for the discussion of the
stability of the latter. It had been found that the
periodic function f(u) in Hill's equation (Rabe, 1961)
converges rather poorly in the case of the periodic Trojan
orbits, and has sharp and deep dips at the two turning
points. This behavior can also be understood on the basis
of the computed non-perlodic orbits, as well as in the light
of the analytical results to be presented here. To the
first order of approximation, the principal short-period
osclllation superimposed on the long-perliod libration
orbit has the shape of an ellipse with a 2/1 ratio of

its principal axes, and the large axis tends to keep itself
aligned with the tangent to Juplter's orbit, buti not:with
the tangent to the libration orbit in‘the(rotatingag

frame. In other words, the short-perlod. oésciitlations:

do not follow the curvature of the libration orbit and
consequently cannot be represented by just a féﬁ'terms
from a solution of Hill's equation.
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Non-Periodic Motions. 5.

II. The Differential Equations for the Displacements
from the Periodic Libration Orbit.

If the origin of the rotating rectangular coordinate
system (x,y) is 1dentified with the center of mass of the
two finite masses, both of which are permanently at rest
on the x—axis, then the periodic librations are known
functions

oo o0
x = X5 + ;gi X,y o8 (3O) + ;;1 X3, sin (JO)
- - (2)

oo o<

Yy =¥y * ;gl Ve, 08 (30) + 2 vy 5 sin (30) ,

with given numerical coefficients x,, y~ s X s X ,
0 0 CsJ S,J
ych, ys,J’ and with

O’:g-,f{-/z(t—to)=n(t—to)o (3)

In Eq. (3), T is the period of the libration, and ty
denotes the moment when the periodic Trojan planet inter-
sects the straight line connecting the principal mass (sun
or earth, respectively) with the triangular point L5, at
the outside passage of L5° The quantity n, also defined
by Ea. (3), may be called the frequency or mean motion of
the libration. In Egs. (2), only the coefficient Xq
differs from the corresponding po in the earlier (p,q)-
system (Rabe, 1961), in consequence of the different origin
of the (x,y)-system. The convergence of the séries repre-
sented by Eqs. (2) was found to be very satisfactory for

a wide range of lilbration amplitudes, in the sun-Jupiter
as well as in the earth-moon case. The theory of non-
periodic motions to be outlined here applies to both cases,
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-

but for the sake of a convenlient terminology everything
wlll be phrased in terms of the Trojan problem, for which
it is also intended to use the results first of all.

The periodic solution (2) satisfies the differentilal
equations

¥ - oNy = ()x

Sy

()

y + 2Nx

where g?x andgi& denote the partial derivatives: with respect
to x and y of the function

Q=_5;+_££2.+.;.(A1?+MA22). (5)

<

Egs. (4) are based on the adoption of the constant dis-
tance sun-Jupiter as the unit of length, of the mass of
the sun as the unit of mass, and of a unit of time which
reduces the gravitational constant to unity. Therefore,
Juplter's angular orbital velocity N is related to its
mass [l by

N =1+ M . (6)

In Egqs. (5) for g), the quantities le and lﬁé denote the
periodic Trojan's distance from the sun and from Jupilter,
respectively, and are given by

Qﬁz _ (x M )2 + 32

L\22=(x+ 1 )2+y2. (7)
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Egqs. (7) indicate that the sun is permanently located at
+ 1*11)’ 0 , and Jupiter at (— 1+li

The differential equations (4) have to be satisfied
not only by the particular, periodic solutions (2), but

also by any

X=X+u y=y +vV (8)

representing the motion of a non—periodic Trojan oscillating,

by increments (u,v), about the (x,y) of the periodic or
reference solution (2). It 1is easily seen that the re-
placement of X,y by x+u, y+v in Eqs. (4), and the sub-
sequent subtraction of the original Egs. (4), produces the
new differential equations for u,v in the form

. . 1
u - 2Nv = §) u + g}xyv +'§§)xxxu g?xyyv + g) uv + ...

XX

(9)

Vv + 2Nu

i

where the g}x(x+u, y+v) and gzy(x+u, y+v) originally
involved on the right-hand sides have been expanded as
Taylor series in powers of u,v. The §) §) 5’ etc.,
denote the second and higher order partials of §2 with
respect to x and y, as functions of x and y alone (with
u =v = 0), and thus as periodic functions of a.

Two different possibilities exist for the determination

of the g?xx’ §)Xy, etc., on the basis of the corresponding
periodic solution (2). First, differentiation of Egs. (4)
with respect to the time t produces

800
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- (10)
o ve ( . -
y + 2Nx = . ny + Q Yy >

two relations involving the three second order partials of
§2together with the known periodic functions x, y, X,
¥, X, ¥. The third relation still needed for the deter-
mination of §) 1s obtained from

ot gy Sl 18 obt

Qxx+ny+sz=2N2’ (11)

taking advantage of the fact that for motions limited to
the (x,y)-plane, with z =0, one has

Q,zz=—Kl-—5—-KK-’(—§=—N2+%’-(2NSc+3f), (12)

(2N + ¥) . (13)

~
+
)
I
w
=
n
!
|~

Now Egs. (10) and (13) may be solved for 9. , SO,
C}Xy5 and the four third order partials of ?f mayy%hen be
found from relations obtained by differentiating Eqs.
(10) and (13) with respect to t, and Eq. (13) also with
respect to y. The continuation of these differentiation
procedures evidently produces the necessary number of
relations for the determination of the partials of §2 of
any requlred order as periodic functions of Cf. The
solution of these systems of equations will involve divi-

-2 '2
X

sions by various powers of y and of V2 = + y , but for

80«
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the libration orbits considered here, these two quantities
never vanish.

The second possibility for the determination of the
functions xx? etc., 1s based on the general expressions
for these partials in terms of x and y. These are easily
derived from the corresponding differentiations of Eq.

(5) for §7, considering also the Egqs. (7) for le and &,.
One finds

I PO U O T B/
Qxx = (l AIB) Al5 ( l+,u

Coulf )

o C (14)
b o
vy IANE E57 N N
Qxy=A35(x_ﬁ/:£_)y+ /,(—-—3-5(x+ﬁ_—1——)y 3
) H A, =
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O ._o | __A‘__\)__IL(X_L)3+

o T N5 \CTTHL | T AT T+
st i) - o [ e i)
Qxxy=—A—iL5-y- 117 x_#ﬂl—;z“u!:_}_y_ (15)
Bf?(““;fyjf
(s b ] - (] 7

etc. Evidently these expressions offer no advantage over
the Egs. (10) and (13) and those following from the
differentiation of (10) and (13) if a direct substitution
of the periodic functions x,y 1s contemplated. However,
the Eqs. (14), (15), etc., are very convenient for the
determination of all these partials of g? by harmonic
analyslis, which is facilitated by the availlability of the
special values of x and y for all the periodic orbits ob-
tained in the Trojan case as welllas in the earth-moon
system. For interpolated perlodic Trojan orbits, the
required special values of x and y, for equidistant values
of CT, may be obtained either by iﬁterpolation between the

S8uy.
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special values of the actually computed orbits, or by
interpolation of the coefficients Xgs Yo xc,l’ xs,l’
etc., and subsequent computation of the needed values

of x and y from Eqs. (2). Since the §?xg, f}yy, ete.,

are the coefficients of the displacements u,v and of thelr
various powers in the differential equations (9), a re-
duced accuracy will be permitted, depending on the ampli-
tude of the oscillations represented by u and v.

Once the Fourier expansions of the partials of §> have
been obtained by either of the two methods, we may assume

to possess all of them in the form now given for g)

XX
§?yy, and glxy:

i

Q 7o LAC,I' cos (I'd) + As.,r sin (rd):\

XX

1
O:D
+
N
il

vy o r=1LBc’r cos (r) + Bs,r sin (rCT)

9 5 —C cos () + C, , sin (rCT)] .

xy ZCeur ,

Y

[
to
-+
\Y)

)

(16)

Il
K
+
N
gl

As far as the size of the various coefficients 1s concerned,
it 1s clear that for small librations the AO’ B ., CO

should not differ very much from the values of ??xx’

§?yy, g?xy at the libration point L., which are well known,
and also easily obtained from Eqs. (14) as follows:

(Ndo =+2 (1 +U), (SU)o=+7 1+,
(Shgdo = - 2Y3 (1 - 1. (27)

The corresponding values of the third order bartials, at

810
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L5, are similarly obtained from Egs. (15):

Sledo = - Fp -1 5 (U)o = - §V3 ()
- V3 () L ()0 =+ 3% (-4

(18)

(3 bexy )0

These values are. 1isted here for subsequent reference.

The principal periodic terms in Egs. (16), with subscripts
c,1 and s,1, should be of the order of the coefficients
Xe,1° %5,1° Ye,1° Ys,1 in Egqs. (2), because Egs. (14)
indicate that the differences

Chx = Bor Sy = Bos 1,0 - 4

yy Xy

must be of the general order of the periodic parts of x
and y, or of

X - XO’ y —yo -

Moreover, the convergence of the series represented by
Eqs. (16) may be expected, by the same way of reasoning,
to be just as satisfactory as that of Egs. (2) for the
periodic solution itself.

It will be convenient to transform the series ex-
pansions of the Egs. (16) into the exponential form.
For this purpose, let )

i

Czr = Ac,r+1As,r’ /3r = Bc,r+iBs,r’ ']} = 9c,r+ics,r for r<l0,
&, = Ao piBg po /3r = By, p~1Bg, po 7;'= Cc,r'ics,r for r>0,
1 =V-1 | (19)
811
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so that
Qxx = _zdrexp(ird), ny = _; ﬁreXp(ird),
. :i?frexp(ird). (20)

Xy

III. The Principal Features of the Solution.

Considering at first only all those terms which are
linear in u and v on the right-hand sides of the differential
equations (9), with the coefficlents now given by Egs. (20),
the solution may be assumed in the form

u = :.Z; urexp[i(r+c) O’j] , v iivrexp [i(r+c) O/] . (21)

Just as in the case of Hill's equation, the unknown coef-
ficients UnsVo, and the stability exponent ¢ have to be
determined from the identities resulting from the substi-
tution of Egs. (21) into (9). Since each of the two Egs.
(9) furnishes one identity in the form of an infinite
series for each value of the integer r, the following pair
of equations of this kind has to be satisfied for each
possible value of r in the left-hand terms:

[n2(r+c)2 + CZO] u, + [2Nn(r+c)i + 70] v,

=- L [C(sur—s + a-sur+s t fsVps T 7—svr+s]

s=1

- [2Nn(r+c)i

70] u, + [n2(1-+c)2 + ﬂo} v,
h Z___l [ sip-s ¥ 7~sur+s + ﬂsvr-s + B—svr+s]

r=0, +1, +2, ....

w0

(22)

8iz
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For small basic librations, i.e., for small coeffi-
cients CZl, Ci_l, cees ‘?:l in Egs. (20), a rather good
first approximation to the solution of the infinite system
of equations (22) may be obtained by neglecting all s

/3r’ 7/ except CIO, /30, ')b, and all u »Vp except
uo,vO The resulting two equations,

2 2 K
(n“c” + Cio)uo + (2Nnci + 2KO)VO =0 3)
23
22
-(2Nnei - ﬂfo)uo + (n%c® + [BO)VO -0,
have a solution if c¢ satisfies the condition
N~ - ~ ~ . n ~s FIETIEN
(n“c” +(:(O) (n‘c2 + /jo) - 4N2n2c“ - [02 =0 . (24)

The Egs. (23) and (24) become identical with the well
known corresponding equations for the first approximation
to the short-periodic solutions of infinitesimal dimensions
about the libration point L5 if, as Jjustified for such
small libration, one puts

= Chdo s Bo=0Clyles  To= (Sl s (25

with the (glxx)o etc., as given in Eqs. (17). Then Eq.
(24) 1s satisfied by a short-period frequency )}/ = nc,
approximated by

ne ~ 1 -2 [ . (26)
Since n = 27T/T, the stability exponent ¢ 1is given by
T 2

8§14
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and 1s of the order of 12.

With the proper result for ¢, either one of the two
equations (23) may now be used to express Uy in terms
of Vgs Or vice versa, and elther U, or v, may be considered
as arbitrary. Going back to trigonometric functions and
real variables, the result of the first approximation
can be written in the form |

u = 2uc,0 cos (c ) + zus,o sin (c() (28)
v =2v, o cos (cd) + 2VS,O sin (¢ ) ,

where either uc,o, us’o or vc,o, Vs,O are arbitrary, and
the remaining two coefficients depend on the two arbitrary
ones and on c through relations equivalent to the complex
equations (23) and (24). These relations between the
coefficients of the solution (28) tnvolve (o, Syr oo
which vary with the amplitude of the basic libration of
long period, and which for large librations may differ
substantially from the approximations (25). Consequently
the elliptic approximation (28) to u,v is not simply the
transposed short-period solution about L5, but contains
already the effect of the constant parts of §7xx’ glyy’
and Xy

To improve the solution to include the effect of the
principal periodic terms of the second order partials of

s the Egs. (22) for r = +1 have to be solved simultaneously

with those for r = 0, considering the involvement of Cil,
L_qs +e> ;{_l on the right-hand sides. The resulting
equations are

8§14
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[nz(c—l)2 + Cio]u_l + [2Nn(c—1)i + '}b]v_l + X _qug + 71v

_[2Nn(c-l)i - 'zg]u_l + |:n2(c-l)2 + ¢30}V-i +"]:luo + /3-1VO
- = 0
Hu_y + Jivg + Ln2c2 + C(o]uo + [2Nnci + 70]"0 +
- & 1 1F a1 =0
Yuog 131v-1 - LENnci - ‘Zb]uo + [n cS + /30 vy + (29)
_1Y + B qV1 = 0
Ciluo + 71v0 [n (c+l) + (X ]u + | 2Nn(c+1)1 + ‘Zb}vl
= 0
’7;u0 + /leo [2Nn(c+l)1 - '761 { (c+1)? + /30} 1
=0 .

The improved value of ¢ will result from the condition
that the determinant of the coefficiehts of the six un-
knowns U 15 V_qs eoes Vg has to vanish, Again, either

Uy Or Vg may be assumed as arbitrary, and the other five
unknowns will be obtained from the remaining flve inde-
pendent equations of the system (29). On the basis of the
experience with successive approximations to the corres-
ponding solution of Hill's equation for the oscillations
about the periodic Trojan orbits (Rabe, 1961, 1962), and
of the numerical results for many non-perlodic trajectories,
it can be expected that even for relatively large libra-
tions the result from Egs. (29) for ¢ will not differ much
from the first approximation, as obtained from Eq. (24),
and that the coefficients U_qs V_yo U, vy will be found
to be substantially smaller than Uns Ve The good conver-
gence of the coefficients C(r, %zr’ ?;, as compared to
the very poor convergence of the comparable er when Hill's

5_1J-
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equation 1is used (Rabe, 1961), should benefit not only

the successive Improvements of ¢, but also the successlve

determinations of the various U5 Vo,e
Up to this point, the second powers of u and v have

been neglected in Egqs. (9). Let it be assumed that

the solution considering the linear involvement of u and

v, in the form of Egs. (21), has been completed to the

desired degree of accuracy, as far as the numerical size

of the coefficients U,V 1s concerned. An . addition to

this solution to account for the actual presence of the

second order terms in u and v in Egs. (9) can obviously

be obtalned by substitution of the "linear solution" (21)

into the previously neglected sécond order terms of Egs.

(9) and by the subsequent determination of a new solution

satisfying these newly created terms on the right-hand sides

(and, of course, the linear terms as well). If then the

new solution 1s added to the previous one, the general

solution of the Egs. (9) will have been completed to the

terms of the second order in u and v. After this, of

course, a further "third order addition", considering

the presence of cubic terms in u and v in the Egs. (9),

may be obtaineq in the same general manner, if necessary

or desired. Attention has to be paid to the form of the

exponents (arguments) emerging in each addition to the

previously established solution, because the re-appearance

of previously obtained exponents in such an addition may

require a slight reviSion of the earlier solutlon for these

terms.

The substitution of Egs. (21) into the second order
terms of Egs. (9) will create exponents of the forms

816

AIL OGNS NEN ANG OGNS GOSN GAS SNE MON ) N GO N Gem BN W Ww A oS



mEEEEEEEEEEEEEEmEeS

Non-Periodic Motions. 18.

i(2c+r)J and ir(0, including cases with r = O. Accordingly,
the adddtive solution should provide for all these ex-
ponents, none of which is of the form of those in the linear
solution (21). The coefficients of the new terms will be
determined by substitution into the complete Egs. (9).

The terms with exponents i(2c+r)CT are of short perilod,
those with irCf, however, of long period, and constant

terms appear when r = O in the latter group. The appearance
of small constant terms in the right-hand sides of Egs. (9)
is easily absorbed by corfesponding constant terms Ung

and Voo in u and v, respectively. If the constants
appearing in the two Egqs. (9) are k anddl, respectively,

then uoo and v wlll be determined from

00

CLugy + Tovoo = K (30)
0
70“00 + Lovoo = - A - 3

If one proceeds to the consideration of terms involving
u3, u2v, etc., in Egqs. (9), then it 1s seen that the sub-
stitution of the preceeding linear and second order solu-
tions into these terms will partly produce new terms with
exponents of the form i(r+c)(J of the linear solution (21).
This will require a slight revision of the earlier solution
for these terms, including a corresponding refinement of the
determination of ¢. No principal difficulty, however,
appears to stand in the way of an extension of the total
solution to any desired degree of precision. The purely
periodic (or constant) nature of all the terms emerging
in the process of the solution, combined with the very
good convergencé of the Fourier expansions involved, in-
dicates true orbital stability, not Just in the first
order sense usually decided on the basis of the linear
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"terms alone;, but considering the presence of the second
and higher order terms as well. There 1s no indication

of instabllity even for rather substantial amplitudes

of u and v. These analytical results eonfirm the tentative
conclusions from the numerous calculations of such non-
periocdic orbits.

IV. Some Properties of the Solution.

If V is the non-periodic Trojan's veloclty in the
rotating frame, and VO that of the periodic reference
Trojan in the libration orblt; then one has at any time

2 2 -2

- VS = 2k + o)+ 6f 4 9E (31)

Vv
Limiting x and y to their principal periodic terms with
J =1 in Egs. (2), and u and v similarly to the approxi-
mation represented by Eqs. (28), the products xu and §¥
involved in Eq. (31) are found to consist of periodic
terms only, with arguments (c-l-l)Cf° The part u2+v2,
however; contributes a constant part

2. 2

v . v 2 2 2 2y

2
o = 2¢%, (u 0 tug o TV + v

c,0 s,0 ¢ (32)

The difference g) §> between the functions f} and
f? associated with the non—periodic and the perilodic
TroJan, respectively, can be expanded in the form

§} - g?o = f?xu + g?yv + %-(?xxuz + %-f?yyva + g}xyuv + vooo
(33)

§18
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No constant terms arise from the linear part of Eq. (33),
but the second order part contributes such terms. From
the approximations of Egs. (17), . for§7 etc., and from

(28) for u and v, the constant part of §0- f? is
found to be of the form

0- Do=3 () (g 24y B+ 2 (1 4pt) (vg 2 + vy g

'%ng_(l -AL) (uc,O vc,O + us,O vs,O) ° (34)

Now the difference of the Jacobi constants CO and C,

of the periodic and non-periodic Trojan, follows from the

respective Jacdbl integrals as
2 2
Co - C=2(52 - S0 + (VB -v 2 . (35)

Since the right+hand side of this equation, consisting of
constant as wéli as of perlodic terms of many different
periods; must always be equal to the constant left-hand
side, it follows that all the variable terms with the same
argument must separately add up to zerg,zarndithat thec.can-
stant terms must also satisfy the relation

c - 2(Qo -0+ (v o v B (36)

o -
To evaluate thils expression for 55:6, the results of Egs.
(32) and (34) have merely to be substituted. If one takes
advantage of the relations existing between the coeffi-
cients of the elliptic fluctuation represented by Egs.
{(28), and 1if, in line with the approximations already
introduced; termms of order AL are omitted, the result
from Eq. (36) is reduced to

813
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e 2 2
Co - C + Vs,0 )

=
J

(Voo . (37)
This result confirms the numerical findings that the

Jacobi constant C of the noh—periodic orbit is always
smaller than the Jacobl constant CO of the‘prqper reference
orbitg and that the difference CO-C increases substantially
with the amplitude of the short-perlod fluctuation as
represented by Vc;O and vy . It should be noted that a
relatively small change in C may be related to a rather
large change in the amplitude of the predaminant long-
period libration. Since the right-hand side of Eq. (37)

is roughly proportional to e2, this relation is quite com-
patible with Eq. (1), according to which C is also a
function of e2

The constants K and A involved in Egs. (30) can be
approximated as follows: It can be seen that, with the
approximations listed in Eqs. (18) for the third order
partials of §?, the constant contributions from the second
order tems in Eqs. (9) amount to

. 12 2 2 12 2
K:w 3 —
7 (VC§O + Y5 0 ) s A +-7W/3 (Vc,o Vs,0

neglecting again the higher order terms in u and v. Sub-
stitution of ¥ and A 1nto the Egs. (30) leads to the
solution

2+

2 8 1 2 2
Vs,0 ) s Voo = AN * V3,0 ) -

\E;(Vc,o
(39)

These small constant terms tend to produce an asymmetry
of the principal short-period oscillation, just as the 1li-
bration of long period has an asymmetry which increases
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with the amplitude of the libration. The constant dis-
placements uOO’VOO depend likewise on the (arbitrary)

size of the principal short-period oscillation as represented
by vc,O and VS’Oo

V. Summary and Conclusions.

It seems that the results of this analysis are of
interest first insofar as they afford a deeper’'insdight into
the basic nature and stahility of the non-periodic motions
in a wide neighborhood of the triangular points. Secondly,
however, it is hoped that the theory can be applied to the
motions of the actual Trojan'planets, after its proper
extension to the less restricted case of an eccentric
orbit of Jupiter, and then to the inclusion of deviations
from the sun—Jupitér orbital plane. It will be appro-
priate, of course, to test the convergence of the expan-
sions involved on a suitable hypothetical Trojan planet,
with realistically chosen amplitude values for the libra-
tional and oscillatory motion. The principal advantage
of this method undoubtedly lies in the ready availabllity
of completely rigorous perlodic reference orbits, which should
eliminate at the outset a great deal of the work required
in previous methods. The approach leads, of course, to
a mixture of numerical and analytical features, which,
however; should be no disadvantage, in the light of similarly
constructed theories of other problems in celestlal mechanics.
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Theory of Librational Motions. 1.

I. Introduction.

In the preceeding lecture (Rabe, 1963), the non-
perlodic motions in the neighborhood of the periodic solu-
tions of long period have been represented in the form of
a serles of superimposed oscilllations, of various short
and long periods, taking advantage of the availability of
preclise Fourier series representations for the long-
periodic libration orbits in the restricted problem.

If the relative motion of the two finite masses 1s assumed
to be elliptic, instead of circular, these periodic solu- -
tions cease to exist. We know, however, that the two
triangular points themselves remain solutions also in the
ellliptical problem. In this case, the equilateral configu-
ration of the three masses remains the same at all times,
and only their mutual distances experience periodic fluc-
tuations of the order of the eccentricity e' of the rela-
tive orbit of the two finite masses. The three masses
involved remain "at rest" in a non-uniformly rotating
system of reference axes, 1f the system 1is conceived as
pulsating, in addition to its non-uniform rotation. If

the small --—**-"- 1is not exactly at one of the two equi-
lateral points, but close to it, its motion relative to

the two finite masses, therefore, may perhaps advantageously
be described in terms of displacements from some appro-
priate "librational" orbit which participates in the non-
uniform rotation and pulsation of such a system. It is
attempted in this study to discuss the necessarily non-
periodic motion of any small mass, with starting conditions
comparable to those in the neighborhood of the periodic
librations of the restricted problem, by first transposing
the periodic orbits of the restricted problem into the
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Just described elliptical system, simply applylng the
periodic scale factor as determined by Juplter's elliptic
motion, and by then establishing the differential equations
for the deviation of the true motion from this pulsating
or modified intermediate orbit, which itself, of course,
cannot be expected to be a solution of the differentlal
equations of the elliptic problem. It may be anticipated,
however, that tpe displacements can be found as a con-
glomerate of oscillations of various periods.

II. Differential Equations for Non-Uniformly Rotating Axes.

For convenilence of reference, the two finite masses
involved will be called sun and Jupiter, and the body of
negligibly small mass a Trojan planet, but the derivations
are valid, of course, also for the elliptical earth-
moon problem (in the absence of the sun), or for any
mass ratio permitting the existence of perilodic solutions
in the restricted case of the problem.

The center of our (§,72)-system of rectangular axes
shall be assumed to coincide with the center of mass of
sun . "~ Jupiter, and the.§ -axis shall permanently coincide
with the straight line connecting these two finite masses.
Then, if

2
l-e
P = T¥e cos O (1)

represents the variable distance between sun and Jupiter
as a function of the true anomaly 6 and of the orbital
eccentricity e, the unit of distance being identifled with
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the semi-major axils a=1 of Jupiter's heliocentric orbit,
the coordinates (§1,771) of the sun and (§2,722) of
Jupiter, in this non-uniformly rotating system, will be
given by

g1 = Tg_l[p N,=o, §2 = - ﬁ%[p N,=0, (2)

where [l again denotes the mass of Jupiter in units of the
solar mass. In some deviation from the introductory re-
marks, a flxed unit of distance has been defined, because
the intended pulsation of the transposed reference libra-
tion will be achieved by the application of the factor}j ’
as defined in Eq. (1).

As in the restricted problem, the Trojan's distance
from sun and Jupiter will be denoted by le and [32,
respectively, so that in terms of the TroJan's rectangular
coordinates

A* (§-§1)2+712
Azg (E-&)%+M % .

The unit of time shall be fixed agaln by demanding
the constant of gravitation to be unity, so that Jupiter's
mean motion N 1is given by

N =Vi+ty . (4)

(3)

it

In the non-uniformly rotating system Jjust introduced,
as associlated with Jupiter's elliptic motion around the
sun, the differential equations of motion for the Trojan
are
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Pt . .2 . DR
- 20 - 0 - 0 =
§-20M - &5 -8 -5
7?+2‘e§—é272+é§=sL_R,
o
if the motion 1s limited to Jupiter's orbital plane. The
force function R in Egs. (5) is given by

|

R = + . (6)
firid.
Now, since
,D - pz e sig ) 3 (7)
l-e
and
D26 = NV1-e
or
'e NV1—e2 (8)
= '-T )
;J
one easily finds
b = Ne sin 6 , (9)
. 1_32 ]
.o 2
= N—-g--cos o, (10)
o,
2N2
6 = - g sin 6 (11)
[j ,

In the corresponding, uniformly rotating (x,y)-

system of the restricted problem sun-Jupiter-Trojan, let

the periodic libration orbits again be represented in

the form
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X = x5 + ;él Xc,J cos (jJ) + JZA xs,J sin () ,
- - (12)
y =730 + gl yc,,j cos (Jd) + ng yS,J sin (JJ) ’
with ‘
d = n(t - to) 3 n = g‘%—T 2 (13)

where T is the libration period and to the zero epoch.

Since the motlon to be transposed may be non-perilodic
already in the restricted problem, or, rather, a certain
motion in the elliptical problem may be more closely re-
lated to a certain non-periodic trajectory in the restricted
problem than to a perlodic solution of the latter, the
most reasonable transformation should have the form

E=Plx+u), N=py+v). (14)

Here x,y represent a periodic solution (12) of the restricted
problem,‘g ,72 are the coordinates of the elliptic problem
as previously introduced, and u,v are the unknown deviations
from the periodic solution x,y in the restricted problem,
which have to be determined so that the §,7Z as expressed
in Eqs. (14) satisfy the differential equations (5).

It is convenient to introduce
X=x+u, y=y+v . (15)

In the restricted problem, these X,y would be the coordi-
nates of a non-periodic Trojan planet, satisfying the
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differential equations

§-2N§=§€2 L)
X
i (16)
g = af)
+ 2NX = —— ,
y X 255
w__j_.th

1 A 2 A 2
=R + 5 (Al + uA o ) s
| | : (17)
where the bar over A 1’ Az, and R indicates that these are

the functions given by Eqs. (3) and (6) when § is re-
placed by X, and /] by ¥.

Q=*8 +-12‘-[N2_,(562 +52) + 1+M}

On the basis of Egqs. (14) and (15), the time deriva-
tives of § , 1] can be written in the form

§j=:§+ﬁ’i‘ (18)
N=py+py . |
£ = px+epx+ px (19)
7= py 2Py + py

In the Egs. (3) for Al and A2’ not only § and 7] ,
but also §1 and §2 incorporate the variable factor p s
so that

Al=p2&1, A2=p52, (20)

which relations are simply a consequence of the basic
Eqs. (14), or

§=px, N =Py (21)
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which introduce the effect of Jupiter's variable solar
distance [ on all the relative distances in the (g';n )-
system. It 1s easlly seen now that

JR _ 1 OR OR _ 1 OR
- 2 P o 2 - 7
E)g' Jo, ox a7 Js, oy
and if one substitutes Egs. (18), (19), (22), as well as
the earlier Eqs. (8) and (11) into the differential equa-
tions (5), considering also Egs. (1) and (17), then, after

multiplication of the resulting equations by ;32, these
take the form

(22)

p3; - ‘\/l-?pfr + 2N2 pae sin GJ.-C = %S_Z

1-e * (23)
P + 2NVi-e2;ji + =21 % sin ey = 51521 .

1-e2 P y

If these differential equations are compared with the
earlier system of equations (16), with identical right-
hand terms, the more involved nature of the left-hand
sides of Egs. (23) 1s due to the fact that Egs. (23) are
those for a u,v-solution satisfying the original Eqgs. (5)
of the elliptic problem, while Eqs. (16) determine the
corresponding solution of the ordinary restricted problem.
In order to obtain the differential equations for u and
v, the X,y should now be separated into x,y, representing
the periodic libration, and the increments u,v, according
to Egs. (15). At the same time, the following elliptic
expansions shall be introduced into Egs. (23), for all the
periodic functions and constants depending on Juplter's
orbital motion:
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/j =1 + %-ea - (e—%e3) cos M —~% ezcos 2M —-% e3cos 3M...
‘ﬁe =1+ %-ez - 2(e-%e3) cos M --% eZcos oM -y% e3cos 3M... (24)

;33 1+ 3e2 - 3(e+%e3) cos M + %-e3cos 3M... ,

Vi-e2 = 1 -~% e2...

(25)
e sin 8 _ (e - g-e3) sin M + e sin 2M + g-e3 sin 3M... .
Vl-ea
These expansions, in terms of the mean anomaly M of Jupiter
in its orbit, are complete to the third order of e in the
coefficients. M may be introduced as a linear function
of time through
M =M+ N(t - to) s (26?

where the epoch to is identical with that used in Eags.
(12) and (13) for the periodic solutions x,y. Conse-
quently, MO is the value of Juplter's mean anomaly at

an instant at which the periodic Trojan intersects the
straight line connecting the equilateral point L5 with

the sun S on the outside of L5. A the time tO+T, when the
periodic Trojan returns to this position, Jupiter's mean
anomaly will in general have a value different from MO,‘
unless the values of N and n, or of the periods T and P,
are commensurable like 13:1, 14:1, etc.

The right-hand sides of Eqs.\(23) can be expanded as
follows, about their corresponding periodic expressions
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for u=v=0:

Qx+Qxxu+Q v+IQ u +1Q v +Qxxyuv+(;;;

Q+Q u+Q u+2§?w_yv +Q

Qo)
B o
"

Here the notations §7 §? §? s+.. have been adopted

for the corresponding partials wlth respect to x and y

of the function of the periodic TroJan of the restricted
problem, and all these partlals are periodic functions of
time, through (J as given in Eq. (13).

Now the§§eriodic solution x,y, on which all the
partials of in Egs. (27) depend, satisfies the differen-

tial equations

¥ - oNy = S0, ,

x (28)
¥+ 2Nx =§)_ . _
¥y
After the substitutions and expansions have been made
as described, and after the right-hand sides of Egs. (23)
have been expanded according to Egs. : (27), then the Egs.
(28) may be subtracted, and the following two .differential
equations result for u and v:
U-2N=R, +e |E,L +F '
. . 1 [ 1 l] (29)
V4 oNG =R, +e B, + Fz] .

Here the right-hand sides have been divided into two prin-
cipal parts, with a further subdivision of the eccentricity-
affected second part into those terms independent of u,v,
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and those depending on u, v. The three classes of terms
so distinguished are represented by the followlng ex-
pressions:

_ 1 2,1 2
R, = g?xxu + f?xyv + 2§2xxiu + 2{) vo o+ f)xxyuv + e

1 (30)

_ 1 2,1 2
R2 = g)xyu + g?yyv + 2§7xxyu + 2§?yyyv + f}xyyuv F+ cee s

E, = fu + gV + hil
o (31)
= -gu + fv + hv ,

F, = fx + gf + hX

: e (32)
F2 = -gx + fy + hy ,
with
f = -2N [(1 +<§ e®) sin M --% e® sin 3M ...]
g = -2N [(l - %-ez) cos M + %-e cos 2M +-g e® cos 3M ...] (33)
h = -3e + 3(1 + %-ea) cos M —-% e2 cos 3M ... .

It is seen that the Eqs. (30) for R, and R, are identical
with the entire right-hand sides of the differentlal equa-
tions in the case of the restricted problem, and indeed
Eqs. (29) reduce to those of the restricted problem when
e=0, For small eccentricities, as that of Jupiter's orbit,
the restricted problem (solution) for the motion of a
non-periodic Trojan should therefore still represent a
good first approximation to that part of the complete
solution of the Eqs. (29) which may be called the free
oscillation, as based on arbitrarily chosen starting data.
Evidently the particular solution

u= 0, v=0, (34)
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representing the periodic libration x,y in the restricted
case where e=0, does not exist when e#0. As far as the
"elliptic" terms represented by E, and F, are concerned,
they clearly will produce additions of the order of e to-
the restricted problem solution, and these additions have
to satisfy the complete Eqs. (29), including the parts
denoted by R, and R,.

The parts involving El and E2 depend on the first and
second time derivatives of u and v, and therefore, once
any solution including the consideration of these terms

has been obtalned, they have to be considered also in any

.‘
ubsequent approximations leading to terms of higher

order. The parts involving Fl and F2, on phe other hand,
do not depend on u,v and their derivatives, but only on
the short-period orbital motion of Jupiter and the long-
period libration represented by the periodic solution (12).
To find the effect of these terms, which cause a "forced"
oscillation about the reference orbit, the R-parts of the
differential equations have to be satisfied, of course,
in the first approximation neglecting second and higher
powers of the eccentricity e, while the consideration of
the E-terms may and even should be postponed until the
subsequent second approximation, because the terms pro-
duced by the substitution of the first approximation,

of 0(e), into E, and E, are of O(ez). The determination
of the forced oscillations, to any desired degree of
perfection, may be achieved without any consideration of
the additional free oScillations, and the successive
approximations for the free oscillations can be obtailned
without any consideration of the F-terms, which are the
source of the forced oscillations. The E-terms, however,
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affect both parts of the solution, beginning with the
initial consideration of their presence, and once included
play a similar role as the R-terms.

In the light of these general considerations of the
significance of the various parts in the differential
equations (29), the general solution can be divided into
two parts, in the form

= + u =

u = u, £ Vo=vy ot v, (35)
where UnsVg represent the forced and Ups Ve the free part
of the solution. Now the earlier statement conceérning

the impossibility of permanently vanishing u,v can be
qualified by saying that

constitutes the fundamental and fixed part of the solution,
but that the particular case

u, = 0, vf—EO (37)
is admissible for the free part of the solution. Evidently

then the solution represented by UgsVys €ven though non-

o
periodic in nature, plays a role in the elliptic problem
which is equivalent to the role of the périodic solution

in the restricted problem.

III. Some Basic Features of the Solution.

As mentioned before, the first approximation to the
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forced part of the solution can be obtained without the
consideration of the E-terms, or from the reduced equations

U. - 2Nv. = R, + eF. ,
0] 0] 1 1 (38)

vO + 2Nuo = R2 + eF2 .

Since the right-hand sides of these equations involve
products of Fourier series depending on multiples of (J
with others depending on multiples of M, the solution
must necessarily be of the form

= T

Uy exp[i(JM + ka)]

P Y
W
\C
[—-—

v, vy e[+ xk0)]

LJ.M&J.
*M =M

where the integers Jj,k may have any value from -co to -o,

The coefficients uj,k’ VJ,k have to be déterminéd;from the
identities which are the result of substituting Egs. (39)

into the differential equations (38). In contrast to the
situation encountered in the determination of the coefficlients
of the principal terms of the free solution, which 1is
identical to the situation in the firSt'approximatibn for

the solution in the restricted problem (Rabe, 1963), the
identities resulting from the substitution into Eqs. (38)

have absolute terms, produced by eF1 and eF2, respectively,
and therefore the solution procedure will be rather . straight-
forward. Successive approximations wlll be neCeséaryL of
course, but the convergence of the solution will benefit
again from the rapld convergence of the series involved

in Rl and R2
second and higher powers of e, from the convergence of the

basic elliptic expansions (24) and (25).

, and, in the subsequent steps considering




Theory of Librational Motions. 14,

For an 1llustration of the method for the determina-
tion of the coefficlents in the solution (39), let it be
assumed that the amplitude of the peribdic libration x,y
1s small enough to justify the omissilon of all the periodic
terms of‘g?xx, §7yy, and vay in the first approximation.
Neglecting also 1n Rl and R2 all the terms involving the
second and higher order powers and products of Uy and Vos
as well as in the parts eFl and eF2 of Egs. (38) all the
second and higher powers of e, these differentlal equations
will be reduced to

Uy - 2NvO = Czbuo + '7bvo - 2Ne (x sin M + y cos M)_, (40)
vy t 2NuO = ?Buo + /BOVO + 2Ne (kX cos M - ¥y sin M) ,

where the CIO, /30, ?B are the constant terms of g?xx’
f?yy, (Uyy (Rabe, 1963). It may be noted that the terms
involving X and ¥, which actually appear in F, and F,
according to Egs. (32), have been omitted, too, because
they contain the second order factor n2, as compared to the
first order factor n contained in x and y.

The Eqs. (40) are simple enough to assume the first
approximation to the solution immedlately in the trigono-
metric form

Uy =Y g cos(M+ () + uS,l.sin(M+(f) +u, cos(M-(y) +

ug _y sin(M-0) (41)
Vo ='vc‘,l cos(M+() + Vs,1 sin(M+O) + Ve cos(M-J) +

vg .y sin(M-0) ,

omitting terms with higher multiples of M and O . It is
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easiiy seen that 2M enters the solution only in connection
with the e2-terms in eFl and eF2, and that 2(J enters

only in connection with correspondingly smaller terms in
x and § as well as in R; and R,. Furthermore, terms inde-
pendent of M or (J, or of both variables, do not appear
in this first order'approximation. Accordingly, the terms
considered in Eqs. (41) clearly constitute the principal

terms of the forced solution UysVge

The substitution into Egs. (40) produces the following
eight identities, conveniently divided into two groups
of four equations each:

Ay, +Cv, 1 +Dyvg g =enN (x, 1 +7¥g ;)

- Aug ) - Do,y GV y = el (xg g - Ve ) (42)
Ci¥e,1 =~ Di¥g,1 + ByVe g = enN (v, ; - %5 ;) |
Dluc,l + Clus,l +Bvgq = enN (xc,l + ys,l)

A1%e, a1 +C_yVv, g +D_qvg g =enN (-x, 1 +7¥g )
A—lus,-l - D-lvc,—l + C—lvs,-l = enN (xs,l + yé,l)
C-luc,-l =D vy, t B_1Ve,-1 = enN ('xs,l yc,l)
D-luc,—l + 0--lus,-l + B-lvs,-l = enN (ys,l.- xc,l) )
(43)

The coefficlents denoted by Ay, By, Cy, Dy, A_;» B_45 C_5»
D_,, are as follows:

A, = CZO + (N + n)2 A_1A= o + (N - n)2
B, = [, + (N +n)? B, = 3, + (N-n)® (1)
oy =¢y= /o
D, = 2N (N + n) D, =2N(N-n).
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The coefficients of the unknowns on the left-hand
sides of the Egs. (43) differ from those of the unknowns
on the left-hand sides of Eqs. (42) only by the appearance
of (N-n) instead of (N+n). The right-hand‘sides of both

sets involve different combinations of the principal coef-

ficlents of x and y, and consequently the factor n, in
addition to the presence of e (and N) as factors. In
order to have unique solutions of the two sets of linear
equations, for the various unknown coefficients of the
Eqs. (41), the determinants of the Aj, By, C;, D, and of
the A—l’ B-l’ C-l’ D—l’ should not vanish. Denoting the
first determinant by 771, the second one by 77;1, the re+
sulting expressions can be represented in one equation:

Ty - {[a - (N-i-n)a] [ B, + (N-l-n)z] - Y2 - mPun)
(45)
With the approximating values of (X, /30, 75 valid
at the libration point LS,(Rabe, 1963), the contents of
the large { bracket in Eq. (45) are found to approxie
mate +2n, and all the not-vanishing sub-determinants of
the first order are then also approximated by 2n or -2n.
Consequehtly, with

M, =~ | (46)
a small divisor of the order of n affects the solution of
the two linear systems (42) and (43), at least for the
relatively small libration amplitudes where (., [, 7o
can be approximated by the values of g?xx’ §2yy, g)xy at
L.. The coefficients Uy 12 Ug 12 cves Vg 3 of the solu-
tion (41) are of the order of e-L, where L represents the
amplitude of the basic libration of long period.
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To find the second approximation to the forced solution
Uns Vo including coefficients involving e2; xc,a, ooo; ys,2;
CIl, Cx_i, coos 2Y_1, the result of the first approximation
(41) will have to be substituted into the various pre-
viously neglected terms of the differential equations (29).
Careful planning will be necessary to make sure that,
depending on the numerical values of the vérious basic
coefficients involved, the proper coefflcients, products
and powers of small quantities are considered in each
successive approximation. It can be seen, however, that
the substitution of the first approximation into the pre-
viously neglected terms of higher order wlll create new
terms, of order e etc., which in general wlll have
arguments of the form (JM + k(J) considered in Egs. (39),
but including terms where either j or k, or both, may be
zero. Consequently, certain terms of long periods will
emerge with the terms of order eEéL. The constant terms
produced by the substitution can be absorbed by correspon-
ding small constant termé in UnsVgs Just as in the case of
the second approximation to the free solution 1n the re-
stricted problem (Rabe, 1963). In general, the previous
approximation to the forced solution will have to be ad-
Justed for any terms with the same arguments obtained
from any subsequent additive solution. While the detalls
of the successive approximations will depehd on the ampli-
tude of the basic libration orbit, the present exploratory
analysis indicates the stable nature of these forced
oscillations, which in their entirety determine one unique
and particular orbit in the elliptic problem, namely the
equivalent of the selected periodic libration of the
restricted problem.

In the general solution of the complete Egs. (29),
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the free part of the solution has to be added and can be
evaluated for any reasonable starting condifions. The
princlipal part of the free solution,‘as has been seen,

is identical with the corresponding approximation in the
restricted problem, where the forced part of the solution
is non-existent. The second approximation to the free
solution in the elliptical problem should, as has also
been shown, include consideration of the E-terms in Egs.
(29). Since these E-terms involve periodic functions _
of M (through f,g,h), which are multiplied by the deriva-
tives of u and v as obtained from the first approximation,
and since the principal terms of the first approximation
are periodic functions of ch, the second order terms now
created on the right-hand sides of Egs. (29) will involve
arguments of the forms

M+cd, M-cO, etc.

The periods of M and ¢ U differ only by amounts of the
order of [l . More precisely, one has

N =Vi+ll , en =1 - 3%[1 , (47)

the second of these relations being an approximétion.
To the same degree of accuracy one gets therefore

2
M-cO =M +22 L (t-ty) . (48)
Those terms of the free solution u,,v, depending on the

argument (M—ch) will have the extremely long period T*
determined by the (approximate) frequency

ARE Y (49)
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Consequently,
87T
T* = EEZT s (50)

which amounts to more than 12 libration periods. The
effect of such terms will be small, however, since they
appear only in the "elliptical™ second-order part of the
free solution. Their actual size will depénd, as the
amplitudes of all the free oscillations, on the initial
displacement from the forced solution, and consequently
approaches zero when the 1lnitial deviations are reduced
to Zero,
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Shock Waves in Rarified Gases 1

I. Introduction

In this series of lectures we shall survey the developments in rarified gas-
dynamics toward the solution of flow problems, the shock wave structure serving as
an example illustrating the difficulties that led to the various refinements and alter-
natives. By rarified gasdynamics is meant the branch of gasdynamics which cannot
be dealt with by the conventional continuum theory of a viscous and heat - conducting
gas, hereafter referred to as simply the (conventional) ''continuum theory'', because
of the effects of very low density. The concept of a continuum however is usually
still adopted, but modifications are required in two main aspects: Firstly, the law
relating the viscous stresses to fluid deformation (the Navier - Stokes relations ) and
that relating the heat flux to temperature gradient (the Fourier law) are theoretically
no longer valid. Secondly, the boundary conditions of ''no velocity slip" and "no
temperature jump" at a solid boundary, generally assumed in conventional continuum
theory, must be re-examined. By restricting ourselves to the problem of the shock
wave structure, we essentially divorce ourselves from the latter question. Our
efforts therefore are directed toward only a formulation of the proper equations to
be used in rarified gasdynamics.

To seek a logical theory which is capable of treating the departure from the
conventional Navier - Stokes and Fourier laws due to the very low density, we fall
back on the kinetic theory of gases. The gas is now regarded as consisting of
numerous molecules interacting with each other and with the environment according
to the laws of classical mechanics. For the simplest case of a monatomic gas, the
molecules are all alike and have spherical symmetry. This will be understood as
our model in the following discussion. The phenomenal success of kinetic theory
in predicting quantitatively, with suitable chosen force laws between molecules, the
viscosity and heat conduction coefficients for use in conventional continuum flows is
well -known. Equally confirmed are its deductions concerning the flow in the ''free
molecule' limit of very, very low densities, such as regarding such flows through
orifices or capillaries. These being the two extremes of the spectrum, we expect

that it should also be fruitful in intermediate stages that characterize rarified gas-

dynamics.
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II. Flow Regimes and the Knudsen Number

When we consider a body of gas enclosed in a vessel of volume V, in equilibrium,
the state of the gas is defined thermodynamically by the pressure p, the density p,
and /or temperature T. These quantities must first be defined from the viewpoint of
kinetic theory. Let each of the molecules have a mass m, and the total number in V
be N. The density follows directly as

p = Nm/V = nm

where n =N /V, the number density. If each molecule is characterized by its "size"
6°, which may be the diameter for the simplest model of hard sphere molecules, the
average spacing X' of the N molecules occupying volume V is

NAS~ v
1+ /a
or X Nn*/o

We have thus a dimensionless parameter for the degree of rarefaction
of the gas as A' /0, i.e., the average size of the cell for each molecule in terms of
the molecular diameter. In classical kinetic theory, this parameter is shown to be
related directly in the corrections of the perfect gas law:

P = PRT .
We shall, however, assume that A'/o~ is sufficiently large that the perfect gas law
holds. A typical value of o is 10 Ccm. At standard conditions (0°C and 1 atm. ),
the number density of gas molecules is given by the Loschmidt number,
h = 2,69 ’(1019 /c:m.3

or A! 2% x10 % cm.

and 2'/0°= 30. The ratio becomes obviously larger as the density is decreased,
since © remains unchanged.
The parameter A' /0 is "static' in nature. As molecules are actually

continuously in motion, there is a '"dynamic' characteristic length representing the

average distance travelled by a molecule |
between successive collisions, known as ;,_-0 ° ° ©
4
the '"mean free path" A. Imagine the Yo 0 ) 0
o s

molecules arranged actually at distance

. o 0 O o
A' apart in a regular pattern. When a

> 845
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Shock Waves in Rarefied Gases 3

molecule moves in an arbitrary direction, the probability of its hitting a second
molecule at a distance of O (A') is proportional to the ratio of the target area
0*2 to the passage area 7\‘2 . Hence we expect

A~a 0 (a2 /a2y ~0 (1/n0?).
With the same typical values for A' and o the estimate at OOC and 1 atm. is

-1 16 -3
/\~(2.69x1019) x10 = 10 “cm.

1
The mean free path goes up quickly as the density is reduced. In the standard
atmosphere at 100 miles altitude, for instance,

At T 10 % em.

A = 300 cm.

Now gasdynamics deals always with flow problems, involving therefore in
addition a characteristic length which represents the scale of the flow phenomenon.
To fix our ideas, let us imagine the flow as over a body of length L. We assume
the flow can be described mathematically as a continuum, so that it must be possible
to introduce "'fluid elements'' of size £ with ¢<< L. On the other hand, to apply
kinetic theory, it is necessary that statis- ,{; )
tical properties over molecules are well
defined in a fluid element. In other words,
there must be a sufficient number of mole-
cules in a cell of size f, or ¢, Thus 'é%‘L"_—”
rarefied gasdynamics generally deals with the restriction of L»¢>X > 6. Because
of the large difference of orders of magnitude between A and 2A', the value of A
may be still taken as arbitrary.

The significance of the mean free path is that it is a measure of the memory of
the individual molecules in a flow field of size L. When a molecule hits the body, it
eventually rebounds after taking on some characteristics peculiar to the body surface.
The explicit dependence of the molecular motion on the body characteristics is there-
fore confined in a "sheath'' of thickness roughly O (A) surrounding the body, which
may be referred to as the "Knudsen layer'. Beyond the Knudsen layer the body
influence is only indirect, being propagated through successive collisions of the mole-

cules which never were in direct contact with the body. The conventional continuum
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equations of motion display no explicit dependence on the body geometry and its
properties. It seems clear that they at most are applicable to the region beyond
the Knudsen layer. If boundary conditions are nevertheless stipulated at the body,
the implication must be a vanishingly thin Knudsen layer. The case consequently
corresponds to the limit of A/L > 0. The parameter X/L is known as the
Knudsen number Kn. :

In the other limit of Kn > o, the Knudsen layer extends to a sphere
of radius A, the body being shrunk to a small region of size L near the origin.
Of all molecules crossing the spherical surface of area O (}2 ), only a small
fraction O (L2 / Az) has collided with the body and rébounded to cross the sphere
again. Hence, if we examine the compo- ‘

dv

element dV in the neighborhood of the
spherical surface, there is hardly any that =L
comes directly from the body. The flow
in the region outside of the sphere is described by conventional continuum theory, but
it is now almost undisturbed by the presence of the body. Such considerations lead to
the 'free molecule flow' approximation, where momentum and energy transfers to
the body are evaluated as if the free stream were completely undisturbed by collisions
caused by those molecules rebounding from the body. It may be noted, however, that
the "free molecule flow" approximation is never valid for the flow field at distances
away from the body large compared to the mean free path, In particular, for two -
dimensional motions in the x,y -plane, say, many molecules frim the z-direction
certainly have suffered collisions before arriving at the plane of motion. This has
led to difficulties, for instance, in the free molecule flow through a two - dimensional
channel.

In between the limits of continuum and free - molecule flows, the flow regimes
are often classified according to the magnitude of the Knudsen number following
Tsien (1946). Thus for Kn<<1 the flow is said to be in the ''slip flow' regime,
in the sense that only the '"no slip' and '"no jump'' conditions at a solid boundary need
to be modified, but the equatioris of motion remain unchanged. Beyond the ''slip flow"

regime and before reaching the flow molecule limit, ie., for Kn O (1), the flow is

said to go through a "transition regime' It is in fact for flow problems in this regime that
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much work remains to be done,

III. Kinetic definition of pressure and temperature of gas in equilibrium. The
Maxwellian distribution function

We return to the question of defining pressure and temperature for gas in
equilibrium in terms of the motion of the

molecules. The gas is assumed to be in a

Ny

fixed vessel , and the pressure is uniform. F ?

In the interior consider a small volume

element dV enclosed by control surface

S. Through a small area dS on the surface, molecules having velocity g will
pass at the rate of n?? 2 dS, where ng is the number density of such molecules,
and ¥ the unit outward normal on dS. The rate of momentum loss due to such

molecules in the 27

direction is therefore mn?( ? > )2 dS. For all molecules
having various velocities ? , the total rate of momentum loss is obtained by summing
-
over all § 's. The result on the other hand must be equivalent to the action of a
pressure force pdS on the same surface element. Hence we write
2
p =Z n?m(?- 7?) .

>

§

For a comparable definition of the thermodynamic temperature, we consider
again the gas in a fixed vessel of volume V. Let us imagine heat has been added
to raise the temperature from absolute zero to T. Kinetically, all this energy,
say E, can only go into the translation energy of the monatomic molecules. Thus

T
E = f CVdT-foV =Z€:n?V'—;-m§2

0
or T Z 1 s2
)0/0 CvdT = - Emn?

where CV is the specific heat at constant volume, per unit mass, and generally
temperature dependent. This gives an implicit definition of T in terms of the
molecular motion.

Since it is always assumed that a large number of molecules are present in
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the small control volume dV, we must regard g as covering the entire range
between zero and infinity. The summation over g therefore goes over into an
integration, The number density n_ may be rewritten as

n?=nf(?)d§') , . .
n being the number density of all molecules, and f ( §)d§ giving the fraction
having velocity between ? and ?+ d?. The symbol d—? above should be under-
stood as a volume element in the velocity space, e.g., in Cartesian space
(§,,8,555): .

df - d3, % d5,
and not a differential vector. The function f ( ?) is referred to as the ''velocity
distribution function''.

Obviously, since
j - —gz j > »
n = n, = J,nf(§)ds =n f(g)d§
2 5 ¥ 4
the velocity distribution function has the property

f(E)dE =1 . m.1)
fg () d€ (

Turning to the pressure definition, we have
- > o 2

L nfdSm (§- 2)

£ 2

p <5, >

P
(1I1. 2)

where $ 1= ? 2, the velocity component normal to the surface, and the bracketed
quantity <Q) represents in general the average of the property Q over all mole-

cules in the velocity space, ;
S
<Q>E/?Qf(g)di : (II1. 3)

Likewise, for the temperature we get

T
f’fo c,dT = fé(g'z) . (II. 4)

It is next of interest to deduce the velocity distribution function in a gas in
equilibrium. First of all there can be obviously no dependence on orientation, so the

distribution function must be a function of the speed § alone. Let the entire speed
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range be divided into a finite number of discrete cells according to the average 5( b
within the cell, and let the number of molecules within the ith cell be ai. It is then
postulated that at equilibrium the distribution of the molecules is the most probable
random arrangement of the N molecules into all these cells, subject to the con-
straints that the total number N and the total kinetic energy E be kept constant.

If we assign a set of numbers ai , the number of ways to achieve such an
arrangement is N!/TI (ai! ). Therefore we write the possibility P of such an

arrangement as P

1
N!/T (a,)! For convenience, the maximization may be
i v i

carried out for P' = log P under the constraints N =const. and E =const. Using
Lagrange's multipliers o and «', we finally seek to maximize P'- «N - ' E.

The necessary condition is thus

iy 2
—Q-P'—s(— og'-%mg(l) =0 .

GER
i
But 0 0
_— ¥ = - — 1 n i i : iva
aai P aai log (ai) !, the "logarithmic derivative,
;_[logai+_1+.-..]

2a,
i
for ai >>1 (Jahnke and Emde: '"Tables of Functions'', p. 18). Hence assuming
ai>> 1,
i)2
log a = - - -zl-oc'm{(l)
«! ?(i)z

or a, = Aexp (- - m ). If the cell size is made to tend to zero formally,

the distribution functions must be of the form

2
f=Ae_'¢g (II1. 5)

known as the Maxwellian distribution function. The two constants A and /5 are
determined by the constants N and E. To integrate, note that the volume element
d? should be evaluated as that of the spherical shell between speeds § and
£+dS, ie., 4T gzdi. In this way we find
/2 3 _

' 4p

Meanwhile, for the pressure p, we choose ' ¥ to be in the Cartesian x -direction

- T

A =(/;/<1T)3 E = [ CvdT . (IIL. 6)
0

. % .
and denote the velocity & by its Cartesian components (g‘l ; ;’2 ) 5;3 ). Then

8§50




Shock Waves in Rarefied Gases 8

2 P 2 _2 _2
p ='0<5_,_> =f)Af[{{12e-/5(gl +§2 +§3)d{1d§2d§3=}0/2p .
0

Since the perfect gas law is assumed to hold, the pressure formula gives
p=1/2RT . (I1.7)
From the second of Eq. (IIL.6)

_%E _ 3 _ 3
€ =or "ot B3/ =R

a well -known result in thermodynamics.
It should be noted that the assumption of ai >71 that led to the Maxwellian
distribution is clearly violated as (1) - . In fact, although integrations in the

velocity space are alwzggls‘;%glrlyied outto § -> o, the logical cut - off for a given E

cannot exceed £ = +/ 2E /m . which is the esneed of a single molecule absorbing
L e R T ] ?max L' -~ f 3 Y ALA AL & SR ~alepy o

the. entire amount of energy. The assumption of ai>> 1 ceases to hold before
g( 1) fmax. , and the Maxwellian distribution function has little significance for
molecules whose speeds approach § max. * It however applies to almost all
molecules.

With the Maxwellian distribution function, the state of a gas is fully described
by the two parameters n and /6 . Instead of A it is often more physical to use
the average speed of the molecules ¢,

¢ =<g>=/8RT/1 (111 8)
which is quite close to the sound speed a (a=\/yRT, ¥=5/3 for monatomic
gases ), which is the propagation speed of small disturbances and plays an important
role in conventional gasdynamics. Likewise the number density n is directly
related to the mean free path A . The state of the gas molecules thus may also be
characterized by ¢ and A. Outof ¢ and A, we can further construct a time
constant T or its inverse ©:

T = X/¢c =1/0. (I11. 9)
® is known as the "collision frequency" of a molecule, since in time 8t, @05t
gives the average distance travelled cdt divided by the average distance A
between collisions.

" The time constant T is of considerable interest. If the gas is not in equili-

brium, it is plausible to imagine that collisions tend to bring the gas to the most
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probable, hence the equilibrium distribution. The time constant for this process is
no other than 7. In the case of gas in non -uniform motion, there is also a time
constant for the overall phenomenon, If the latter is much greater than T, at each
instant and location the molecules in a small volume element dV will be in "quasi -
equilibrium'. That is, as a first approximation, the velocity distribution should be
Maxwellian, with n and /6 assuming the instantaneous local values, but the obser-
ver must now ride with the average velocity U (over all the molecules in dV).

We denote this as the ''local Maxwellian" f(0 ) s

3/2 =2 3/2 32
f(0)=(ﬁ_) e_ﬂ[? Ul =(§,) e hC (I1I. 10)

where ¢ = ? - fj?, sometimes referred to as the ''thermal velocity'. It is easy to
verify that following Eq. (1I.10), < ?> = ? as stated; also <?2> = 3 /Zﬁ ,
showing that /@ (or T) is intimately connected with <_3>

As a further illustration, in a slightly non ~uniform gas let us assume that the
state of the molecular motion be still characterized approximately by ¢ and A.
Together with the molecular properties of mass m and size 0", there are now
four parameters from which, among other things, the behavior of the transport
properties may be deduced at least qualitatively. For the viscosity coefficient s
suppose

M= u(m, 6,C,A) .

By dimensional reasoning, there must be

mc

Y ey F(7\/0”)~P)\EG(1/U) .

The function G (2 /o) should be taken in the limit A/0 — . Thus the first

approximation should yield ke ‘03 A, which is confirmed by detailed analysis.

IV.  The Boltzmann Equation

The statement that the velocity distribution function for a gas not in equilibrium
is subject to change due to molecular collisions is mathematically expressed by the
Boltzmann equation. Consider an arbitrary control volume V enclosed by the

surface S in the interior of the gas. On a surface element dS let 7 be a unit
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outward normal. For those molecules having
velocity between & (1) and ‘g'( )y ds < 1) R/ ‘g’( )
the total number in V at any time is

IPU-1C DN 1¢%

(§ ydg€ dV . The flux of such S

molecules through the surface § is
fs ( —'i,(l )- -L-’) nf ( ‘Z( 1 )) dg( 1) dS. Let further the rate that such molecules are
created in a small volume element dV, through collisions, be denoted by

-
9 nf l di(l)dv. Then we must have

ot coll. 3
-
KA . dV+fnf§(l)-77dS= f 5 of av
ot v 1 S 1 v ot 1) coll
By applying Gauss theorem to the surface integral and letting V - o, it becomes
the Boltzmann equation:
J A1) 3
~ + nf = — nf .1
3 2 V- 1% 3 ol (IV.1)

n -, (1) ) . . ?( 1) .
where fl =f(% ). In Cartesian coordinates, since is a constant vector

in the derivation, the Boltzmann equation becomes

d (1) 3 _9
30 *§; axinfl'atnf

(Iv.1)!
coll.

where X, are the Cartesian coordmates € (1) the Cartesian velocity components
of 3 T ) , and the convention of summing over identical suffixes is adopted. In more
abbreviated form, this is sometimes written as

_ 9 =__ (1)6
Dlnf1 = 3¢ nf1 coll. D, = + §

The evaluation of the collision terms in the right - hand side of the Boltzmann
equation of course requires detailed treatment. A molecular model must be chosen
first of all. The dynamic processes of collision are usually simplified by making
the following assumptions:

(1) only binary collisions occur, and (2) "molecular chaos' prevails. The
second assumption means that the joint probability of finding two molecules having
g (1 ?,and g(z ) , respc?rtfl a, ergalﬁn%lme is simply the product of the individual

probabilities as if the other were absent. Physically, it amounts to the supposition
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that except during collisions, the molecules are uncorrelated with each other. Both
assumptions are valid so long as ' /0?71, the second one in particular having
been examined in detail by Jeans (1925, Chapter IV ).

We shall only briefly sketch what the collision term looks like. The force field
of each molecule is taken to be conservative and spherically symmetric. The binary
collision between two molecules of velocity ?( L) and ?( 2) turns T{?( L) into
?( L and §(2) into %‘(2 ! , and may be represented schematically as

(1,2) = (1',2') .
We refer to this as a *'direct collision', causing the loss of molecules ''1!''. Because
of the conservative nature of the process, obviously an "inverse collision'' can also
happen, i.e.,

(1',2') — (1,2),
causing a gain of molecules "1'" . The total number of either type of collisions must
depend upon the available number of the participants, as well as the relative speed
$2 between the two molecules and ''cross section" S representing the effective
target area. Thus, the total number of class "1'" molecules lost in dV during time
dt, through direct collisions with all possible molecules of class "2" is

7(2) 2

9
f2 denoting f (§ (2) ). Similarly the gain of molecules of class "1" in dV

nfldvﬁ’(”st f nf Qsdgl?) (IV.2)

during 8t, through all inverse collisions involving 1' and 2' is

(?(2) nt) d¥1) av 6t ng, v s € (2
Note that since (1,2) — (17, 2'), for given E'( 1) the inverse collisions must
be summed up over all pairs of the 1'- and 2'- molecules through the choice of
molecules of different ?(2). However, the details of the collision process show
that

st=s, Qr=-q, dg) ggD) _gg®) g3
Thus the gain of class ""1' through inverse collision can be recast as
J?(z) nzfl' fy 818 AR CA LRI T

BB et il
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Consequently, the right - hand side of the Boltzmann equation can be put into a more

convenient form and Eq. (IV.1) becomes

D. nf, = n? (g1 -1 ] nsd3t?) (IV. 3)
1717 Jee® Pile T : ’

In the case of gas in equilibrium, the left -hand side of Eq. (IV. 3) vanishes.
A possible solution is obtained by setting the integrand in the right - hand side to zero.
The procedure amounts to the assumption that each direct collision is exactly balanced
by its inverse, often referred to as the "principle of detailed balancing'. As applied
to Eq. (IV.3), the solution of
ff -f i ft =0
+(0)

is in general the local Maxwellian distribution f , Eq. (III. 10 ), and proved to
be unique (Jeans, 1925, pp. 25-28; Grad, 1949). To satisfy the equilibrium
requirement, naturally the mean velocity _l,I’ and temperature T here must be
independent of space and time. To justify the ‘'principle of detailed balancing"
in this case, it should be mentioned that a consequence of Eq. (IV.3) is '"Boltzmann's
H-theorem", showing essentially that any distribution should indeed tend to f (0)
through the collisions. For further discussions of the theorem, see e.g. Chapman
and Cowling (1952, Chapter 4).

It is observed that the expression (IV. 2) expresses the total number of
collisions involving the class '1" molecules. Therefore we may introduce an average

collision frequency 01 for a class "1" molecule, and it must be given by

- £(2) :
e = J?(z)nfzﬁSdg : (IV. 4)

Formally then, the Boltzmann equation may also be written as

Dlnf1=—91[nf1—nfl] (IV.5)

where f 1 is to be obtained by identifying the right - hand side with that of Eq. (IV.3),
and has the significance of an average distribution function for the outcome of the
inverse collisions. The property that f 1 > f { 0) as the number of collisions
increases should be kept in mind.

We note that according to Eq. (IV. 4), the collision frequency is directly
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proportional to the number density. In the other limit of 91 = 0 for extremely
rarefied gases the "free molecule flow' is obtained by setting the right - hand side
of Eq. (IV.5) to zero, neglecting the collisions completely. The property nf
then is propagated without change in the direction E'( L) and at the speed ' gl )/
By turning Eq. (IV.5) into an integral equation, a first order correction for ''near

free molecule flows' may be obtained through iteration, using the free molecule

solution to evaluate nf , see, e.g., Willis (1958).

V. The Maxwell Transfer Equations and the Hydrodynamic Equations

The Boltzmann equation is a nonlinear integro -differential equation, evidently
very difficult to handle. In flow problems, however, the complete information given

by the distribution function is much too detailed and more than necessary. Our interest

in most cases is in the average properties of all the molecules within a 'fluid element',

such as the temperature T and velocity fl) To deduce equations governing these
averages we turn to the Maxwell transfer equations. These are obtained by multiply-
ing the Boltzmann equation by any function @Q ( E’ (1) ) and then integfating over the
velocity space ?( 1 ).. Since Q ( ? 1 )) is independent of space and time, the result
from Eq. (IV. 3) is, dropping the superscript (1) on E(l)

L) 0

52 <Q7 + 3 n<Q§,> = {AnQ) )\ (V.1)

i

The term <A nQ> coll. on the right - hand side is simply an abbreviation of the

rather lengthy expression, to be examined immediately.

Written out in full, the term is
vEY - (1) 2(2)
an@> L(l)[g(z)Qn (£ £3 - 1,1, jasatP g2

Q1 standing for Q (g ). Since the integration is over all ‘3>( ) and g 2)

the roles of '"1'" and "'2' may be interchanged without affecting the result. Hence,

alternatively,

e , =(2) zZ(1)
<an@d>, = \é(z)f?(l)Qn [f3 8] - 1,8 1NsdS agtt)

We next note that when 3'( ) and § g(2) take on all possible values, so do § g )

and g(z)' But,
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(1,2) & (1',2'),

If instead all the inverse processes are considered, the integral may also be

expressed in

(1) 22)!
<AnQPco. =f§>(1)'f§?(2)v Q[ f, - 1] f11 0 s dg (1) a§t2)

- 2 e (1) 2(2)
_[?(1)/?(2) Q)n” [f 1, flfé]ﬂ.Sdg d§s " 7.

Again interchanging the suffixes "1' and "2", we get still another form:

= ' n2 T (2) (1)
LnQpy . = J;,(z)/;,(l)an [f,f) fsz]JZSd§7 AR

Finally, a form symmetrical with respect to the indices 1" and "'2" is obtained by

using the arithmetic mean of the four equivalent expressions:

<AnQ>cou. =

= E . 2 ) L - ) - ' (1) —»(2)
'4(?(1)?(2)“ (£ £]-1,£11Q,+Q,- (@] +Q))1 s dg ) aE (%)

(V.2)

Eq. (V. 2) explicitly shows that if Q is a dynamical property which is a '"collisional
invariant", i.e.,
Q, +Q, = Q] +Q)

then < A nQ>coll. vanishes. This is, of course, to be expected. The right - hand
side of the Boltzmann equation is the net change of the number of molecules with
velocity g( 1) . When multiplied by Q1 and summed over all the molecules, the
result is the net change of the property Q for the aggregate due to collisions. If the
sum of Q does not change in any collision, the total cannot change for all the collisions.

For conservative systems the collisional invariants are mass m, momentum
m‘:‘? and energy lm‘gz. With Q = m, Eq. (V. 1) gives the "continuity equation”

2
in conventional gasdynamics,

0 i)
BtPJraXiPUi—O’ (V.3)
_>
where Ui are the Cartesian components of the mean or fluid velocity U. With

Y
Q = m§ | there follows

5 p0 apED-0
i

B
o
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Let us write
e d > = .
€ = U + ¢, or in Cartesian components,
= U + cC,,
l;i i i
where ¢ is the "thermal velocity', and obviously <ci§ = 0. Then the transfer
equation for momentum may be recast in Cartesian coordinates after making use of

Eq. (V.3), into the conventional form

' 0

P[BTU1+Uiaijj]“ax P,. (V.4)
where Pij may be identified with the stress tensor in conventional gasdynamics,
and is seen to be given from the molecular viewpoint by

Pij=—P<cicj>. (V.5)
. 11 ,2P22 and P33, Eq. (V.5) gives
Py = -p<e D= -p<c

But (cz> = 3/2/5 = 3RT, and from the perfect gas law p = pRT. Hence, as

If we sum the three ''normal stresses'' P

is usually defined, we also have
1
=-—P .
P= "3 %
After taking the pressure out, the kinetic expression for the "viscous stress tensor"
is found to be
t
= - + 6 ’ .
Py = -p<ejed + Byp (V.6)
where Sijz 0 for i#j, 8ij= 1 for i=j.
. 2
Similarly, for Q = m§~ /2 , the transfer equation can be manipulated into the form

of the conventional 'energy equation',

3T , , AT oY; %9
Pcv(bt"—Uibxi)_—paxi+6+Bxi (V.7

where @ is the ''dissipation function™,
| an
=P, . —
ij ox.
J

and —@; is the 'heat flux vector", kinetically expressed as
> 1 2
qz—)o<§c "(?>. (V.8)
In general Eqs. (V.3),(V.4) and (V.7) are called the "hydrodynamic

equations", describing the change of the fluid dynamical properties [ 3 and T

in terms of the stress tensor and the heat flux vector. If the distribution function
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is assumed to be a local Maxwellian, it is easily verified by direct calculation that
1
P, .
1]
When deviation from the local Maxwellian is small, we shall see that the Navier -

= q. = 0, corresponding to the inviscid and non heat - conducting approximation.
1

Stokes and Fourier laws emerge. When these are no longer sufficient, there seems
to be no other course except through further analysis of the Boltzmann equation to

achieve an adequate approximation of the distribution function.
L}

VI. Asymptotic Expansion for Near Maxwellian Distributions

To begin with, let us recall the Boltzmann equation in the form of Eq. (IV.5),
D = - - nf
1nf1 Gi [ nf nf1 ].

The left - hand side must have a time constant T characterizing the change of the
function nf 1 as an overall phenomenon. The time constant on the right - hand side
is an average of the velocity - dependent collision time 1/ 81 , representing the
details. Thus the solution must behave differently depending on the ratio of these
two time constants. Let us assume that all 61 's are O (6) , an average; the
ratio is then €= 1/7 ©. When £<< 1, it is further expected that f1 = fl(o ).
Restricting to €<< 1, a natural procedure therefore is to seek an asymptotic
expansion of f. in ascending powers of € :

e (0) (1) ), ...
f~10 0 B +€f . (VI.1)

1

We now revert to Eq. (IV.3), noting that the left - hand sideis O (¢), compared
to the right - hand side and that f’( 0) is a solution for ¢ = 0. By substituting
Eq. (VI.1) into Eq. (IV.3), to O (¢) the equation becomes

(0) _ (0)' (1) (1), (O)
D nf 'Qé(z)n HCARE A S )

(0) (1) (1).(0) = (2)
(8], g )y 18 ds Y

A slightly simpler expression results if we set € f( 1) = f( 0) # . The equation for
g is
(0) _ 2.(0),(0) 1 A2)
D nf ?(2) £ fz [¢1+¢2 ¢1 ¢2deg . (VL. 2)
The left - hand side being known, Eq. (VI.2) is a linear integral equation of the

Fredholm type. If f (0) is chosen to be indeed the '"local Maxwellian™,
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ff(o)d?_—.l, ff(o)?d?=f3’, Jf(o)'c"zd_{=%§ . (VI.2)
Then ¢ must satisfy the following:

ff(o);zfd?:o, Jf(0)¢?d_§=0, J'f(o)yfa’zd?f':o. (VI. 3)
Eq. (VI. 3) turns out to be sufficient to guarantee a unique solution of Eq. (VI. 2)
(Chapman and Cowling (1952) ). In fact all that is needed eventually is a particular

solution satisfying Eq. (VI.3). The result is the famous Chapman - Enskog solution.

The particular solution of course depends on the explicit form of the left - hand

side of Eq. (VI.2). Evaluating D nf( we find,

ouU,
(0) _ (0) _ 2 i
D, nf {( )? VinT+by, 1 3%, (VI. 4)
where 02 1
" /JCiCj 2 o2
by = 27352 3.2 9%
m m

This expression enables us to be more specific about the time constant T. From
the two terms in the bracket, it is seen that

¢ A
T ~0(—E—LI) or O(éL—U

)

where T is the characteristic temperature level of the flow, AT and AU are
the temperature and velocity ranges, resp., and L is the characteristic length.
In order that ¢ = 1/?6 = )»/cm? 441, we must require (2/L)(AT/T)4<L 1
and (A/L) (A& U/cm )<< 1. For a fixed Knudsen number A /L, the accuracy of
the Chapman - Enskog solution improves as AT/T and A U/cm become
smaller.

We shall not go into the details of solving ¢ from Eqgs. (VI.2) and (VI. 3),
for which the reader should consult Chapman and Cowling (1952). It suffices for
our purposes to note that, because of the form of Eq. (VI. 4), it is possible to
represent ¢ by V

g = - *VInT - Bb, %g—l ,
A and B being two scalar functions of the theeral velocity E? Once A and B

are determined, by Eqs, (V.6) and (V. 8) the viscous stress tensor and the heat

flux vector may thus be calculated. Indeed, these assume the same expressions as
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the Navier - Stokes and the Fourier laws:

P =/“(3—x]. * o, ) - 3'“axj
_ . 9T (VL. 5)
qi B kbxi

and the viscosity coefficient 2 and the coefficient of thermal conductivity k are
obtained from the functions B and A, resp., through quadrature. The Chapman -
Enskog solution, i.e., to O (£) only, brings out thereby the restricted validity of
the conventional gasdynamics, as well as provides a theoretical means of evaluating
M and k  with suitable choices of the molecular model.

When the solution is carried outto O (€2 ), the details are even more tedious
and the resulting formulae for Pi'j and q, are necessarily much more complicated.
Because ¢ contains the spatial gradients of temperature and velocity, the left -
hand side of the Boltzmann equation now includes second derivatives and products
of first derivatives of these mean flow variables. The time derivatives, on the other
hand, turn out to be always capable of élimination in favor of the spatial derivatives.
The viscous stress tensor and the heat flux vector are thus dependent only on the
spatial variations of the mean flow variables. This peculiar set of solutipns is
sometimes referred to as *"'normal solutions''. When the Pu' and q, from the
solution to O (s‘.z ) are substituted into the hydrodynamic equations, the result is
known as the ''Burnett equations'. Since higher order derivatives occur, more
boundary conditions than the Navier - Stokes equations are generally required, and
therefore to be formulated for the solution of the problem. But, although to O (92 )s
if Eq. (V.1) is regarded as an asymptotic expansion, the Burnett equations do not
necessarily provide better accuracy.

We shall now apply the Navier - Stokes equations to the one - dimensional

steady shock problem, which may be stated as follows: Given a uniform stream

of velocity U , pressure p , density Uy
a a TG
Pa , find the solution which permits a \
smooth transition into another uniform Ua . \—'
stream downstream. The final velocity L3 ‘F/-/Ub
N

Ub’ pressure pb and density Pb must
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satisfy the conservation laws of mass, momentum and energy, and may thus be
regarded as included in the data Ua’ pa , and Pa' As is well - known, the relation
between Ua and Ub’ P, and P etc. (i.e., between the downstream and up-
stream quantities ) are the Rankine - Hugoniot relations, in which the key parameter

is the Mach number,
Ma - Ua/‘ Ypa/f)a ’

and, to require the entropy change Sy~ sa> 0, we must have Ma> 1, then Mb< 1.
The detailed calculation has been carried out by various authors. Let the
attention be focused on a '"shock thickness'" L defined by the maximum slope and
the asymptotic values of one of the flow variables, say U, as sketched. Without
explicitly writing out the governing equations, we are content with some general
information from simple dimensional reasoning. The gas is characterized by its
material properties Mg and ka (both are functions primarily of the temperature
for a given gas), the flow may be characterized by the prescribed Ua , ’Oa and Ma'

But a result of the Chapman - Enskog solution is that/U. and k are in fact propor-

tional to each other. Hence the solution must yield

L=1L (Ua’/oa’ Ma’/ua) ’
By dimensional homogeneity, it follows

Ha

L = F(M,)

a a
Since u ~ Pa?\aca , the above predicts
L~A F(M )
a a
The detailed calculations give F (Ma) ~ O (1) for all finite Ma7 1. Thus we
conclude that according to the Navier - Stokes equations the shock thickness is
(@) ('Aa) -~ in other words, most of the changes occur within a distance comparable

to the (upstream) mean free path. However, except for weak shocks where the

difference between Ta and Tb or Ua and Ub is small, the restriction
¢ << 1 will be violated, and the significance of the result is open to question.
The Burnett equations have been applied by Zoller (1931) to the shock problem,

which happens not to have any ambiguity regarding the boundary conditions. The

§b2
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selection gives a somewhat larger shock thickness at the lower Mach numbers, but
predicts oscillations in the profiles at Ma about 1.3 and breaks down when Ma
goes beyond about 2. Available experimental evidences do not support the last two
rather peculiar results. (See, e.g., Sherman and Talbot (1960).) As a test case,
it is often thought of as an indication that the asymptotic expansion perhaps should

not be carried beyond the Chapman - Enskog level.

VII. Methods Based on the Moment Equations

Abandoning the expansion in terms of a small parameter &, we look for
alternative ways of finding an approximate solution of the Boltzmann equation,
Eq. (IV.3). Similar to the Rayleigh-Ritz or Galerkin methods often used in, e.g.,
vibration problems, a trial function with a number of adjustable parameters may be
assumed, and the latter parameters are to be so chosen that the exact differential
equation will be satisfied in some average sense, Now the Maxwell transfer equation,
Eq. (V.1), may be interpreted as an average of Eq. (IV. 3) in the entire velocity
space when the weighing factor is chosen to be Q, including as special cases the
hydrodynamic equations, Eqs. {V.3),(V.4) and (V.7). The mean flow variables
P Ui , and T may be thus interpreted as the ''adjustable parameters' present in
the trial function, as indeed also the viscous stress tensor P{j and the heat flux q;. The
hydrodynamic equations unfortunately are too few in number to determine uniquely
all these parameters, except when Pi'j and q, are somehow related to the other
parameters, for instance, through the Navier - Stokes and Fourier laws. More
equations, of course, could be generated by other choices of Q in Eq. (V.1).
On the other hand, for each Q there seems to be no mathematical reason that the
Boltzmann equation must be averaged throughout the entire velocity space. If the
velocity space is split in two, say §1> 0 and gl <0, for every one of Eq. (V.1)
we get two equations: one from the integration in subspace 51 >0 and one from
the integration in subspace ¢ 1 < 0. All such equations will be referred to as the
""moment equations'', of which the Maxwell transfer equation itself becomes a
special case. By ''moment equation method" we mean in general that after assuming

a trial function as the approximate solution, the parameters are determined through

8b3
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the choice of a sufficient number of moment equations of one type or another.

For practical reasons the number of parameters in the trial function will have
to be rather limited. The accuracy therefore would be quite profoundly affected by
the choice of the trial function and the moment equations. It is obviously desirable
to incorporate in the trial function as many as possible of the features of the expected
solution. There is yet no guidance on how best to choose the moment equations. But,
in contrast to the asymptotic expansion, its applicability is not restricted to any

special segment of the entire Knudsen number spectrum.

(A) Grad's Thirteen Moment Equations

As alluded to in the above, by examining the hydrodynamic equations, it would
be natural to take the flow variables P, Ui , T, as well as Pi‘j and q, as the
parameters in the trial function. This is precisely what Grad (1949 ) proposed to do.
Because of the symmetry the apparent number of parameters is 14. One of these,
however, is redundant, since p = pRT = - (1/3) Pii' The net number of parameters
is therefore 13, and eight more moment equations are needed beyond the hydrodynamic
equations. Grad's choice was to use again the Maxwell transfer equations but with
Q = ¢ Cj and ¢, 02. Out of the nine equations that result, one of them is also
redundant because the ‘'energy equation'', Eq. (V.7), from Q = < ci is already

accounted for.

More specifically, the distribution function which Grad took as the trial function

is of the form

q 2 P! c.c,
5
5 pc c 2 c P
m m m m

0
where f( ) is the local Maxwellian, and Chm = 1/\//5 as before. It is easily

verified that the averages - P<Cicj> and - P<( 1/2) c, CZ> calculated with

Eq. (VII.1) are in agreement with the definitions of Pi" and q, according to
Egs. (V.6) and (V.8). Infact, it might be remarked that Eq. (VII. 1) could be
written down directly from the Chapman - Enskog solution by replacing the velocity
and temperature gradient terms in the latter with Pi'j and a9, through Eq. (VI.5).
Generalization of Eq. (VIIL. 1) is possible, as Grad pointed out, by including in the

bracket higher order polynomials in c, orthogonal to the terms present (the

8b4
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""Hermite polynomials''), amounting to a series expansion of the correction to the
local Maxwellian in terms of these polynomials. (Additional parameters and
moment equations will then be required.) By limiting to Eq. (VII. 1), the deviation
from the local Maxwellian therefore is implied to be relatively small.

With Q = mcicj, Eq. (V.1) becomes
9 9 _
3t l°<°icj7 * 3%, P <°i°'gk> = <20%7 coll.
or 3 9 -
at f’<°icj> xk ax P U<eye > * %, P <"i°j°k> = <Af’°i°j 7 coll.

The left - hand side averages can also be evaluated with Eq. (VII. 1) but the right -
hand side depends on the molecular model. The most convenient model is the so -
called Maxwell molecule, which repels another like molecule with a force proportional
to r—5 , r being the distance between the two molecules. For such molecules, the

equation finally may be written as

3t Pi'j *3 Ukpi'j + o bxj + axi -3 sij Bxk )
+ P! T-l P! a_l& _ 2 ' ?E_l:{_
k axk ik axk 3 "ij ke dx,
ou; oU; o oUy
- 1,1 _= X, __R
PU5x "ox 3 613- o, )= - By (VIL.2)

where M denotes the expression that gives the viscosity coefficient according to the
Chapman - Enskog solution for the same molecular model. Likewise, with

=(1/2) mcicz, Eq. (V.1) leads to

aqi 3 7 an 9 ou, ouU,
3t *9x, Ui% +—qj 3%, +—(q'3x 9 B, )

b apy, ] ! 3P,

ij . oRT _J_ jk
+ RT P [ -5 2
bx ij Bx P bxk jk axk
5 aRT 2 _g
2P ox, T sA % (VIL. 3)

From Egs. (VII.2) and (VII. 3), we see that in Grad's solution, there is considerable
interaction between the stress tensor and the heat flux. More striking when compared
with the Chapman - Enskog solution is the presence of the explicit time derivative term in

both equations. Thus, if there are no spatial variations, the equations reduce to

865
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d P
= T = _ t
[] Pij M Pij
o)

__2p
at 4T s Y’
A relaxation phenomenon, non - existent in the Chapman - Enskog solution, is now

predicted. The time constant is O (/u/p ). Since /U-"’ }OER,

p PRT c e

which is of course the expected order of magnitude following Eq. (IV.5) as
discussed in the previous section. But here the result is more quantitative and
in particular P i'j and q, are found to have somewhat different relaxation times.

Of considerable interest is the fact that both the Chapman - Enskog and
Burnett formulae for P;j and qi can be obtained from the Grad equations, even
though the Grad equations are obtained from a distribution function, Eq. (VII. 1),
that is at the level of the Chapman - Enskog solution only. This is done by regarding
Egs. (VII.2) and (VII. 3) as definitions for the right - hand side quantities, namely,
Pi'j and q; - If Pi'j and qi are small, the effects of the presence of these
quantities in the left -hand side may be determined through an iteration process,
starting from Pi'j = qi = 0. The first iteration then gives precisely the Navier -
Stokes and Fourier laws. The second iteration gives the Burnett result, after
eliminating (an /0ot) and (OT /dt) by means of the hydrodynamic equations.
This feature of the Grad equations is the effort in achieving the Chapman - Enskog,
not to say the Burnett, solution, it also demonstrates the power of the moment
equation method when properly used.

We skip over the question of the boundary conditions for the Grad equations,
which have been examined to some extent by Grad himself. As applied to the one -
dimensional steady shock problem (Grad (1952) ) at lower Mach numbers these
equations yield solutions which are rather close to the Navier - Stokes result, giving
a slightly larger shock thickness; but for Mach numbers greater than about 1.65,
again no solution can be found. This is to some extent rather disappointing. The
difficulty could only be attributed to the chosen form of Eq. (VII. 1), which ceases

to provide a good approximation when the molecules are far from being in a state

800




Shock Waves in Rarefied Gases 24

of quasi - equilibrium. For lower Mach numbers, i.e., weak shocks, the up- and
downstream conditions are not too different from each other, the distribution any-
where within the shock thus deviates little from an average constant Maxwellian.

Such is, of course, far from being the case for large Mach numbers and stong shocks.

(B) Mott-Smith's Bimodal Distribution

We now recognize that for strong shocks a trial function not reétricted to quasi -
equilibrium is necessary. A very simple choice was offered by Mott - Smith (1951),
who assumed that it might be taken as a linear combination of the up- and downstream

distribution functions,

0 0
f=oca(x)f;)+c(b(x)fé) (VIIL. 4)

where « (x) and O(b (x) are the adjustable parameters. However, since

7 0P T
ff d§ = ffa d% = jfb d§ = 1, we require
+ =
X, °<b 1, (VIL.5)
If the x-axis is in the direction of flow, the boundary conditions are
X > -00, l>(a-—sl, o(b—>0;

X > +0, ua—>0, x, 1, (VIL. 6)

The '"bimodal' nature is clear, as for givenb x the molecules may be regarded as
a mixture of two groups maintaining either the up- or downstream charaocteristics.
There is now in effect only one adjustable parameter. To determine this
parameter, Mott - Smith left the hydrodynamic equations alone but employed a
moment equation obtained from Eq. (V.11) with Q = 512 ,or % 13 , which then was
solved by imposing Eq. (VII. 6). The hydrodynamic equations provide as usual the
Rankine - Hugoniot relations, expressing all downstream properties in terms of those
upstream. A solution for . say, at all Ma> 1 was shown to be possible and the
flow variables computed as averages. The shock thicknesses so determined from the
two choices of Q differ between themselves by 10 to 25 percent depending on Ma'
This difference, of course, reflects the uncertainty due to the arbitrariness in
choosing Q. There have been consequently discussions attempting to arrive at a
criterion for the selection (e.g., Rosen (1954), Sakurai (1951) ). More realistic

molecular models have also been used in evaluating the collision terms of the moment

gol
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equatién ( Muckenfuss (1960) ). At the lower Mach numbers, the Mott - Smith
shock thickness is much greater than that from the Navier - Stokes or Grad equations,
and generally considered inaccurate. A comparison is shown in the accompanying
figure.

A point worth noting, however, is that with a single adjustable parameter the
Mott - Smith distribution function can hardly be expected to be accurate in the detéils.
Since o U, etc. are found by averaging Eq. (VII. 4), the hydrodynamic equations

are not satisfied anywhere within the shock, except for the finite changes between the

up- and downstream conditions. An alternative avoiding this difficulty seems to be
that the approximate distribution function might be used only for the viscous stress
and heat flux terms needed in the hydrodynamic equations, which then can be solved
in much the same manner as with the Navier - Stokes equations, The result will also

necessarily satisfy the Rankine - Hugoniot relations.

(C) Methods Using Half -Range Distribution Function

We have mentioned that the shock wave is a convenient example in rarefied
gasdynamics because of the absence of solid boundaries. When a solid boundary is
present, the molecules rebound from, or rather are emitted by the solid boundary, and
usually have "forgotten' most of their past history. In fluid elements near to the
solid boundary, therefore, the distribution function would be discontinuous in the
velocity space, in the sense that those moving toward the solid boundary and those
going away from it would require quite different expressions. An expansion of the
Grad type in terms of continuous functions, Eq. (VII. 1) for instance, would need
a very large number of terms to approximate a discontinuity adequately. If the
discontinuous nature is recognized beforehand and taken care of separately, however,
the remainder would be much easier to approximate.

This observation was exploited by Gross and Ziering (1958) in their investi-

gation of several problems involving the A y

/
geometry of two parallel plates when the J 152
gas in between may be highly rarefied. - 51

Y
"

Let the direction normal to the two plates

be x. The molecules are assumed to be
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COMPARISON OF RECIPROCAL SHOCK THICKNESS
FOR MONATOMIC MAXWELL MOLECULES

(From Ziering, S., Ek,F., & Koch,P., Phy. Fluids, 4, 975-987, 1961)
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composed of two groups according to the sign of 71. Then for the distribution
function we write
nf=n, f for 5' Z0 (VII.7)
where n, are functions of x, and f_,_ are defmed only in the half spaces
f Z 0, resp., hence referred to as half - range distribution functions. The functions
f, used by Gross and Ziering are expressed in terms of the Hermite polynomial,
s_imilar to Eq. (VII.1), slightly modified because the orthogonality condition now is
to be applied in the half spaces. Compared with Grad's approach, with the same
number of parameters in the expansion, evidently the half - range distribution function
contains twice as many unknowns; consequently, twice as many moment equations are
needed for their determination. Gross and Ziering then split up each of the Maxwell
transfer equations, Eq. (V.1), into two by carrying out the integration in the two
halves of the velocity space separately. In a Grad -like expansion of the half - range
distribution function, the adjustable parameters lose the physical significance as
corresponding to Pi'j s s etc. , which are, by definition, the averages over the
whole velocity space.
Application of the technique has been limited to sevaral 'linearized' problems
where the relative velocity or the temperature difference of the two plates is small.
In such cases, the half - range distributions were expanded around a constant
Maxwellian, and the calculation was rather straightforward.
An alternative choice of the half - range distributions in Eq. (VII.7) is the ''two -
stream Maxwellian'' distribution proposed by Lees (1959). The form is taken to be
= (B ) exp [, (F - 7] (VIL. 8)
where /5 4+ and T, 4 are the adJustable parameters, in addition to n, , to be
determined by the moment equations. In fact, to generalize the method Lees adopts a
"line of sight principle' which divides the molecules into groups as if in free molecule
flow. In the problem of the gas between parallel plates, there are thus the same two
groups in the half - range representation of Gross and Ziering, each moving toward
one of the walls. For the case of an arbi-
trary body moving in an unbound gas region, @ @
at the given point P a pencil of rays may 870

be drawn to form a cone tangent to the body

These molecules in a volume element at P é
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coming from the body, if in free molecule flow, would have their velocity lying within
the cone @ These are taken by Lees as group . The rest are all taken as group II.
The '‘dual - range' character of the distribution is then expressible in the same form
as Eqs. (VII.7) and (VII. 8), except replacing suffices '"+" by suffices '"'I" and "II'.
For the needed moment equations Lees prefers to maintain the whole - range transfer
equations, Eq. (V.1), with successive Q's similar to Grad's that led to the thirteen
moment equations. In contrast to Grad's distribution, there are now, however, only
and 4 none of which, it may be noted, has any sig-

1,11’:31,11 LI’
nificance as physical observables except in dimension. Regarding the transfer equa-

ten parameters n

tions corresponding to Eqs. (VIL.2) and (VII. 3) as expressions for P;j and qi

in terms of the left - hand side terms, we are inclined to conclude that, together with
the hydrodynamic equations, there still should be thirteen equations for the thirteen
variables ( [oB Ui ,T,P i’j , qi) at this level of approximation. In general the ten
parameters inherent in the 'two - stream Maxwellian' appear too few in number to be
really self - consistent. When applied to the parallel plates problem with large relative
velocity, some difficulty was indeed experienced by Lees and Lin (1961). Their
mention of the possible improvement by using skewed ''two - stream Maxwellians"
amounts to an effort toward additional degrees of freedom.

A further point of criticism may be directed at the ''line of sight'' principle.
The grouping of molecules following this principle is of course correct in the free
molecule limit or very close to the body surface, but the principle seems to be rather
irrelevant after the molecules have gone through several collisions. Its consequences
therefore need not agree with the result from the Navier -Stokes equation in the
conventional continuum limit., This drawback is illustrated in the problem of the
cylindrical Couette flow (in the annulus between two rotating concentric circular
cylinders ) investigated by Ai (1960).

In spite of these objections, the ''two - stream Maxwellian'' is relatively easy
to work with and together with the 'line of sight' principle can be used to set up, at
least formally, the governing equations for flows involving arbitrary geometry and
large deviations from quasi - equilibrium. It would be of interest to see the solution

of the shock problem by this method, which unfortunately is not available.
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VIII. The BGK Model Equation and the Shock Solution

We have discussed above some of the approximate methods of handling the
Boltzmann equation. An entirely different approach is to try for exact solutions by
simplifying the Boltzmann egquation itself. The most well known of such simplifica-
tions is the BGK or Krook model (Bhatnagar et al (1954), Krook (1955)). Look-
ing back, we have the Boltzmann equation, Eq. (IV.5),

@1 nfl-'- -@1 [nf1 - nfl 1.
The complications are all contained in the right -hand side terms, which will now be
approximated.

> 1/
First of all, the dependence of ®_. on the molecular velocity g'( ) is clearly

a matter of detail. It seems reasonablelto approximate it with simply ) (_r?, t),
an average for all molecules. To simplify the very complicated fl , the choice is
made so as to preserve the following important properties of the exact equation:

(a) As e > o, [ f(o), the local Maxwellian.

(b) In the transfer equation, Eq. (V.1), < AnQ>coll; = 0 for the

collisional invariants Q = m, m?, mec /2.

(c) There is an "H -theorem''.

Krook took directly f = f(o); the model equation is thus
D, - -ne, (1 —f{°)>, (VIII. 1)

That the right -hand satisfies the requirements (a) and (b) is immediately obvious.
It can be shown that condition (c) is also fulfilled. The rate of change of the function
nf is now proportional to its departure from the quasi - equilibrium distribution f (0) .
Hence Eq. (VIII. 1) may be regarded as a relaxation model. The equation is, however,
only apparently linear, since the parameters /d and fJ? in f(o) remain to be
averaged over the unknown f.

All the previous approximate methods of treating the Boltzmann equation can, of

course, be applied to Eq. (VIII.1). The Chapman - Enskog type of solution, for
instance, is obtained by writing

¢ = (0 @,

+ ef
By substitution into Eq. (VIII. 1), the solution for sf(l) is explicitly given as,

dropping subscript "1' 872
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AR —1:,8nf(0) . (VIII. 2)

The dependences on the mean flow gradients VIn T and aU / ax follow from the
same term 9 nf (©) as in the Chapman - Enskog solution. The Nav1er Stokes and
Fourier laws are consequently recovered, except that the viscosity coefficient and
the coefficient of thermal conductivity are more crudely predicted.

The thirteen moment equations of Grad can also be derived for Eq. (VIII.1).
The left - hand sides of Eqs. (VII.2), (VII. 3) are unchanged if Eq. (VII. 1) is
maintained. The right - hand sides depend on the details of collisions but with Eq.
(VIII. 1) they can be written down by inspection. The counterparts to Eqgs. (VII.2)
and (VII. 3) are thus found to be

%P' + A= —Epi'.

5 by (VII. 3)
+ = -

aah FB =99

where Aij and Bi stand for all the terms except the time derivative in the left -
hand sides of the corresponding Grad equations. The only difference lies in replacing
the two relaxation times A /p and (3/2) ( /U- /p) with a single time constant

1/®. _or this reason, the Krook approximation is sometimes referred to as the
single relaxation model. The comparison also suggests that the average ® may

be taken to be
e - £
o =
i
depending on whether Pi'j or q,

or g— (VIIL. 4)

b
M
is the dominant feature.

In the near continuum regime which is adequately described by the Grad
equations, the difference between the BGK model and the Boltzmann equation amounts
thus to a difference in the Prandtl number Pr = M Cp/k. The correct value is 2/3
for monatomic gases while from the BGK model the Prandtl number will be unity.
The regime of free molecule flow in the limit 91 -> 0 is unaffected by the approxi-
mation. Its validity in the transition regimeis rather difficult to assess, although
the common belief is that it should serve as a reasonable interpolation.

The integral equation form of Eq. ( VIII. 1) has been the basis for a number of

applications. For brevity consider the steady flow problem:

g3
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(0)

! (VII. 5)

(1) _d_ e _@ntf -
£ d81nf1 = @nlfl f

>(1
where o is the distance along the direction of § ( ). Direct integration yields,
after dropping the subscript '"1"',

s —
nf = n'f* exp[-j ©ds/¢g ]
s (VIIL. 6)

S __ s (0) S — —_
+exp[—fv@ds/3’] nf exp[[stds/g]@ds/g

S g

where the boundary condition n'f* af s = s' 1is assumed given. The integral
fss, 6 ds /g represents the number of collisions for such molecules in traveling
the distance between s and s', and the exponential factor is the probability that
the molecules from s* should survive. The second term is the gain of such mole-
cules as collision products. Since the unknown functions n and f are involved

in the latter, usually an iterative procedure is necessary to achieve a solution. For
near free molecule or near continuum flows, a good initial approximation of nf(O)
is immediately available, For the transition regime, the initial approximation may
have to be found by first doing a cruder analysis, such as the Lees method discussed
before. Several problems of the flow between two parallel plates are thus solved by
this method (e.g., Willis (1962)).

In applying to the shock structure problem, since the Navier - Stokes solution
is reliable for the lower Mach numbers, and obtainable for any shock strength, it
becomes an obvious choice as the initial approximation. Such was suggested by
Burgers (1956) in his analysis of the problem, but without actually carrying out the
calculation. Recently Liepmann et al. (1962), apparently independently, solved the
problem by the same procedure in a computer, taking @ = p//u , i.e., Pr =1,

The solution shows no anomaly at least for Mach numbers as high as 10. A typical

comparison against the Navier - Stokes 1A— — -

- _ i Navier -
solution is schematically as shown, The Krook

U-U Stokes

agreement with the Navier - Stokes profile b
. U -U
is very close in the downstream half, but a b
the upstream portion is considerably more
spread out, especially at the higher Mach 0 > X

numbers. This is understandable since the effective coordinate is really fg dx, so

8§74
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the physical distance should be inversely proportional to the collision frequency, hence
the density, which value for the upstream portion is a small fraction of that for the
downstream portion for the stronger shocks.

The Liepmann solution of the shock structure based on the BGK model is
unquestionably the most satisfactory to date. It is, however, only the exact solution

of an approximation to the Boltzmann equation.

IX. Further Discussion of the Approximate Solution of the Boltzmann Equation

Attractive as the BGK model is, we must not lose sight of the fact that it does
not replace the Boltzmann equation. Better and better approximate methods pre-
sumably could be developed for the exact equation, and some of them would eventually
surpass the BGK model in accuracy. Thus, we return to a discussion of the possible
improvement in approximate methods, especially from the viewpoint that these should
be applicable throughout the range from continuum to free molecule flow, as the BGK
model is.

To gain some perspective, consider the simple differential equation

a _ _ (0)
edt =-fHI(Y (IX.1)
f(0) given

where £ is a constant parameter of arbitrary magnitude, * Eq. (IX.1) evidently
embodies the most important features of the Boltzmann equation, & having the same
significance as 1 /6. It is also an analog of the BGK model. The boundary condi-
tion f (0) corresponds to the known distribution at an initial instant, or the boundary
s = 8" asin Eq. (VIII.6). The solution of Eq. (IX. 1) can be immediately written

down:

3 e [
f=£(0)e U/° +%et/€j0 0 /e 4 (IX. 2)

which may be regarded as the simplified version of Eq. (VIII. 6).
If t is kept fixed and finite, the asymptotic solutions for ¢ —> o or ¢ > 0

are easily obtained from Eq. (IX.2). For ¢ — o, the result is

* I am indebted to Prof. G. S. S. Ludford in calling attention to a very similar
example in Erdelyi's paper on singular perturbations (Atti Accad. Sci. Torino
95 (1960-61), 651-672).
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1 t (0) 1
f%’f(O)+E O[f —f(O)]dt+O(£7-), (IX.3)
while for ¢ > 0, we get
f=f£(0) -¢ at + 0(¢ ). (IX. 4)

The first term of Eq. {IX. 3) corresponds to the ''free - molecule'' flow approxima-
tion, and the second term is the equivalent of the 'first collision' correction usually
obtained by one iteration from the free - molecule solution. In the same analogy, the
first term of Eq. (IX.4) corresponds to the local Maxwellian in quasi - equilibrium,
and the second term is the counterpart of the Chapman - Enskog correction. Both

types of asymptotic solutions, as we now see, are not uniformly valid for all t.

(Note, in particular, that Eq. (IX. 4) can never satisfy the prescribed boundary
condition f (0).) For a given ¢ however large, there is an upper limit of t
beyond which the ''free - molecule'" type of asymptotic expansion ceases to be valid.
In the other limit, for a given £ however small, there is a lower limit of t below
which the asymptotic expansion for small ¢ is of no value. Although elementary,
this demonstration seems to focus on some of the basic properties of the Boltzmann
equation. The pitfalls of trying to push either type of asymptotic expansions into the
"transition regime'] where ¢ ~O (1), are thus obvious.

The situations for ¢ > and ¢ = 0 are very similar to the problems of
finding asymptotic solutions for low and high Reynolds numbers, resp., in viscous
flow theory. Corresponding to the limit of ¢ -=» o, the ''Stokes theory' for very
low Reynolds numbers is known to be involved in an unbound fluid at sufficient dis-
tances from the body. In the other limit of ¢ - 0, the analogy to the Knudsen layer
is the boundary layer near the body in conventional gasdynamics. The boundary layer
thickness goes down as the viscosity is decreased. For points at fixed distances from
the body surface, they will eventually lie in the effectively inviscid portion of the flow

if the viscosity is small enough. To see the details in the boundary layer, the point

in question must be made to move closer to the body surface as the viscosity is reduced,

in order to remain within the boundary layer; then and only then the limit for vanishing

viscosity may be taken. If we change the words ''boundary layer' to ''Knudsen layer"

and ''viscosity' to '""mean free path'', the last three sentences describe exactly what

should be done for analysis of the Knudsen layer as § = 0.
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As also disclosed by the exact solution, Eq. (IX.2), the natural independent
variable should indeed be t = t/¢ . We now keep t fixed and finite but let €->0.
If Eq. (IX.2) is expressed in t and then integrated by parts, the resulting

expansion is found to be
f = f(0 -E+ f(O) tdf—(o—)]—e f(O)O -s—ﬁ-) ]+O 2)
= f(0)e +[f - £ 0 -2 5|, o (7).
By expanding f(O) and df (0)/ dt for small ¢ two alternative forms, both accurate

to O (¢) for finite §, are obtained,

(0) 3 ()
~ -t (0, o dft ot df_.‘ A
f= f(o)e +[f /(0)-¢ ™ t=O][I e ]+£dt t=0t+
(IX.5)
- (0) ~ (0) r
> -t (0) _ oaf P O | S tete. ...
f=f(0)e "+ [f = 1l-e 1-0-% /t=0te +(IX.5‘)

The second form is clearly preferable since it remains valid as t > o , merging
smoothly into the ''outer expansion'' Eq. (IX.4) and taking on the prescribed boundary
value at t = 0.

It is now possible to estimate more accurately the '"thickness" tK of the
Knudsen layer, in the sense that beyond which, to O (¢), Eqgs. (IX.5') and (IX.4)
agree with each other.~ The condition is therefore

e ’Kno (t 2 )

ie., EK~O(1nf:) 4

or tK ~ O (¢ lne¢), Infact, no matter to what finite order of £ is expanded the
asymptotic solution Eq. (IX.4), the same argument will show that tK is always
O (¢ln ¢). The Knudsen layer remains to be treated separately.

Returning to the central problem of formulating an approximate solution for the
Boltzmann equation, we suggest that the distribution function should exhibit much the
same basic features as the solution Eq. (IX. 2) of the simplified model. In a moment
equation approach, for instance, a reasonable choice of the trial function might
resemble Eq. (IX.5'). If we assume an average collision frequency ) as in the
BGK model, a convenient form is

nf = n'f' exp[—[:'_(@_ds/f] +n0f0[1—exp[—/ss' 5ds/3‘]]

(IX.6)
where n 0 f 0 is chosen to contain the adjustable parameters to be controlled by

satisfying the moment equations. Since we work with only the average properties
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P Ui’ Pi'j , Oy in the moment equations, there is considerable leeway in the choice
of n 0 f 0’ the main restriction being that it must reproduce the Navier - Stokes and
Fourier laws in the limit of ©® > ®. The free - molecule behavior is guaranteed by
the n'f' term, which automatically divides the molecules into groups depending on
their 'origin'. No further assumption such as the Lees 'line of sight'' principle is
now necessary.

It may be noted that the term analogous to the last one in Eq. (IX.5"') is omitted
in Eq. (IX.6) for brevity. The effect presumably is comparable to the net difference
from alternative choices of nOfOQ It is to be emphasized, however, that Eq. (IX. 6)
is not meant to be so assessed. Only the form is suggested by the BGK model. The
approximation itself is adjusted to satisfy the moment functions of the exact Boltzmann
equation, and any molecular model may be adopted for evaluating the collision integrals.

A source of difficulty in the use of Eq. (IX. 6) is the concept of an average
collision frequency 6 As in the discussion of the BGK model following Eq. (VIII. 3),
the choice of @ appears to be either pé"- or (2/3)(p/m). Besides this
ambiguity, any choice of a single average @ of course over - estimates the mean
free path of the fast- moving molecules, as shown by the smaller numerical factor
2/3 needed for matching the heat transfer by means of the BGK model. In assuming
Eq. (IX.6), on the other hand, we have effectively used the BGK model to suggest
a way of grouping the free - molecule - like and Navier - Stokes - like molecules. Thus
there is no strong reason not to allow @ to vary somewhat with the speed of ¥ ,
thereby compensating for this source of error. The refinement, however, may or
may not be worthwhile, because, again, the net difference might be comparable to
that from the alternative choices of n0 f 0 In other words, the nature of the approxi-
mation Eq. (IX.6) is, as a first step and like the BGK model, only to guarantee
a smooth transition between the free - molecule and the Navier - Stokes limits. The
resulting macroscopic equations are already rather cumbersome to attack, and have
been solved only for the simple cases of the linearized plane and cylindrical Couette
flows (Shen (1963)). It seems yet premature to introduce further complications.

To conclude this brief survey of the current status of rarefied gasdynamics, we

reiterate that our emphasis has been on the treatment of flow problems in terms of
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the observables such as mean velocity, pressure, temperature, shear stress and
heat flux. The aim is thus essentially to look for the replacement of the conventional
Navier - Stokes and Fourier relations in the hydrodynamic equations of motion,
applicable throughout the entire range of Knudsen numbers. It might be said that to
various degrees of approximation methods are indeed slowly emerging. Unfortunately
the geometry of the problem will always enter into resulting equations, so in effect
special attention is required for each class of problems defined by its geometry.
These equations furthermore are much more complicated than the Navier - Stokes,

and our experiences are still confined to the simplest possible examples. The shock
wave structure, because of its independence from solid boundaries, has been one of

the ideal testing grounds for workers in this rapidly advancing field.
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Basic Fluid Dynamics 1

1. Introduction

In attempting to survey basic fluid dynamics in a program dedicated to the
field of applied mathematics in space problems, the foremost question is to settle
upon what should be meant by the word "basic'. To this end, Professor Goldstein's
admirable monograph (S. Goldstein, "Lectures in Fluid Dynamics", Interscience
Publishers, 1960) has provided a valuable guiding principle. Our endeavor in the
following, however, is slightly different from an abbreviated version of Goldstein's
book, but reflects somewhat the aerodynamicist's viewpoint. After the formulation
of the general equations of motion, the emphasis is mostly on the motivation and
derivation of the different approximations which find applications in various practical
problems, particularly to bodies in flight at the higher speed ranges typical of space
activities. Much material of basic and mathematical interest is unavoidably left out,
as are the full details of the solution of any specific problem. In their places, we
choose rather to illustrate, ever so briefly to be sure, how the theory has been ex-
ploited in the explanation and prediction of complicated physical phenomena.

Since most of the coverage is 'basic', therefore contained in the well-known
treatises such as those of Lamb and Milne-Thomson, as well as Goldstein's book

mentioned above, we have refrained from giving references except in rare instances.

1I. Description of Fluid Motion

The fluid medium we work with shall be a continuum which, although somewhat
idealized, should approximate the real gas of interest, namely air, in its behavior.
Fluid dynamics then deals with such a gas in motion with or without the presence of
solid boundaries. The state of gas in equilibrium, as when enclosed in a stationary
and insulated vessel, is described by two thermodynamic variables, say density P
and temperature T ; and any other thermodynamic variable can be expressed in
terms of p and T. Inparticular, we often desire to know the pressure p of the
gas, observable as the normal force per unit area acting on the wall. The relation
may be written as

p=rp(p,T) (II.1)
and usually referred to as the "equation of state'. Under the assumption of a perfect
gas, Eq. (II.1) becomes explicitly

p = pPRT (I1.2)

where R is the gas constant, depending only upon the molecular weight of the gas.

883



Basic Fluid Dynamics 2

When a body of gas is in arbitrary motion, it becomes necessary to regard the
body of gas as composed of a large number of fluid elements, which must be small
enough to represent the details of the fluid motion, yet not so small as to exhibit the
coarse nature of the molecular motion. A velocity T/) may be assigned to each fluid
element, and an observer riding with the fluid element may now determine the density
and temperature of the gas in the fluid element. The pressure p follows again from
Eq. (II.1). If we trace the changes of p, [ T, v with time for each fluid element,
the result is the '""Lagrangian description' of the fluid motion. Alternatively, it is
often more convenient for analysis to use a field representation by examining the flow
pattern, i.e., the functions o

p(2,t) , p(B,t) ., T(T,t), V(T 1)
where T designates the location of the fluid element at the given time t. This is
now the "Eulerian description' of the fluid motion.

In the Eulerian description, the rate of change of any property Q of a given
fluid element is usually written as DQ /Dt . Hence if Q is expressible as

Q ('f, t), we have

Q= lim [Q(T+AT, t+at) - Q(P, 1)1 / At

At-0
= lim [Q (?+VAt, t+At) - Q (?,t)] /4t

Aat-0

- (2+V - v)a. (II.3)

For example for given 7 ( 7, t) , the acceleration of the fluid element is equal to
DV / Dt . Howéver, sometimes @ may not be given as a field, then a direct evalua-
tion is necessary. To illustrate the latter, let @ be the volume 3T of a fluid element,
and define the 'dilatation'" 6 as the rate of volume change of the fluid element, per
unit volume:

0= lim = (3 b), (II.4)
If 8% is bounded by surface S and n is the
outward unit normal on the surface element

dS, clearly by definition

lim V. ®ds/ 8t
dt+0 ‘S

divV . (II.5)

9
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Basic Fluid Dynamics 3

Of considerable interest in the Eulerian description of fluid motion is the
"streamline pattern', showing the direction of motion of each fluid element at a
given instant. The '"streamlines" are defined by

dF_ x Vv = o, (IL. 6)

where d?s is a length element on the streamline. If the flow pattern does not vary
with time, the fluid motion is said to be a '"'steady flow'". The streamlines in such
cases coincide with the trajectories of the fluid elements.

Aside from the translational motion of the fluid element, we must, of course,
also expect in general a rotational motion as well as a change of shape with time.
The angular velocity of the fluid element turns out to be one half the "vorticity" o,
which is defined through a given velocity field V (¥, t) as

T=VxV . (IL.7)
Following Eq. (II.6), we may then look at the vorticity pattern by introducing
"'vortex lines" analogous to the streamlines,

d?vx:?= 0 (I1.8)

where d?v is a length element on the vortex line.

III. Equations of Fluid Motion

The equations of fluid motion express the requirements that the fundamental
laws of the conservation of mass, momentum and energy must not be violated. These
can be very simply stated if the Lagrangian description is adopted. Consider a small
fluid element of volume &t ; its mass will be pét . For generality we introduce a
"mass source' m such that mass is being added to the fluid element at the rate of
mdt. Then the law of conservation of mass as applied to dT states that

D%,oév: heT . (II.1)
In Lagrangian sense, the left hand side is an ordinary time derivative of a product,
and we may write

ot %% + PDRtE,T = m&t
By using the definition of the dilitation 6 , Eq. (II.4), to evaluate % St , the

result may be rewritten as

%ﬁt+p6 = m (II1. 2)

which is known as the ''equation of continuity'. When p, V and m are regarded as
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field quantities in Eulerian description, we only need to interpret the terms in Eq.
(III.2) according to Eqs. (II.3) and (II.5) .

For the momentum }076’1' and énergy PEdT (E being defined as the energy
per unit mass of the fluid), equations similar to Eq. (III.1) may be written with a
"momentum source'" B and an "energy source" E , respectively, on the right

hand side. The same manipulation yields

—

P2 - F- ¥ (I.3)
and

P_Dﬁ% - E-mE (TI.4)

Again, although derived from the Lagrangian description, Eqs. (III.3) and (IIl.4)
offer no difficulty in interpretation for the Eulerian description, provided m, B
and E are given as field quantities.

We restrict ourselves in the following to the case of m = 0. To proceed
further with the terms P and E , it will be assumed that these are only due to the
interactions between adjacent fluid elements, and that the basic fluid properties are
isotropic, namely, invariant with orientation. For _I-’), aside from the pressure p
experience shows that any non-uniformity of motion causing a change of shape of the
fluid element would be resisted by the fluid through the development of internal
stresses between fluid elements. For E , experience shows that heat will flow
through the boundary of the fluid element if a non-uniformity of temperature exists.
In addition, the stresses acting on the boundary perform mechanical work on the fluid
element. |

Consider now a fluid element 9v within the surface S. On a surface element
ds, let ¥ be the unit outward normal and T the resultant stress vector. Referring
to a set of Cartesian coordinates X i=1,2,3, these have components n, and Fi’

resp. It is then convenient to introduce a stress tensor Tij such that

Fi = Tijnj . (III.5)
In Eq. (III.5) and hereafter, the customary convention of summing over an identical
subscript will be understood. Since ‘L’ij [y
includes the pressure which is present ¥

even without fluid motion, we may separate 4s
Tij into two parts:

o7
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= L.
Ty = Ty PYy
(0..=0, i#j; 8,.=1, i=j), (I.6)

1] 1)
the negative sign indicating that the pressure is always opposite to ®. The tensor
Ti'j is the "viscous part" of Tij , and remains to be related to the non-uniformity
of the fluid motion.
If the non-uniformity of the fluid motion is slight, it may be characterized by
the first derivatives of V with respect to the space variables at the point under
consideration, hence the tensor aui / ax]. . Splitting bui / bxj into symmetrical and

anti-symmetrical parts, we have

ou

oy
3x; ij T @;

du. du.
IS St S |
eij —2(0xj+6xi) (O1.7)
e
wiis =3 (5% " =®)

The anti-symmetrical part wij is easily seen to be

Wy = =269 (II.8)

where Wy is the component of the vorticity & defined by Eq. (II.7) and € ijk is
the alternating symbol,

eijk =0 when the subscripts are not all different;
=1 when i, j, k follow the cyclic order 1,2, 3 ;
= -1 when i, j, k do not follow the cyclic order 1,2, 3.
Thus wij represents the nonuniformity due to a rigid rotation of the fluid. The
change of shape of the fluid element as it moves along is entirely represented by
the symmetrical tensor eij . To proceed further, the 'viscous hypothesis'" is

made that Ti'j should be linearly proportional to eij , i.e.,
1 =
55 = Cijkt®ke *
Cijk ¢ being constants. Now the physical law must not be affected by the orientation

of x in an isotropic fluid. Then there must be *

C xsijske +/“(aik6j£+6jkéi{)

1° %27 %3
ijke

reducing to two constants A and - Hence

* See, E.g., Jeffrey: "Cartesian Tensor', p. 70, Cambridge Press, 1931.
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1 =
L Asij e " Z/ueij (1I1.9)
where obviously e, = V-V
There are then normal viscous stresses T 1'1 ) ’rz'z ) 1:3'3 . Summing the

three, we have .

BV (3A+ 2u) ey
Thus, like pressure p , the average of the normal viscous stresses is independent
of the axes. It is however proportional to the dilitation, and the coefficient 32+ 2 2
is referred to as the '"bulk viscosity coefficient'". For monatomic gases, kinetic
theory shows that

3A+2u =0 or K=—§/u

This result is generally assumed in most applications involving air (even though it is
composed of primarily diatomic gases) so that the viscous stresses are all propor-
tional to a single material constant, the ''viscosity coefficient'". Eq. (III.9)

becomes
Ty = —g-/uéijekk+2/ueij (II1.9) "
known as the '"Navier - Stokes relation". It may be noted here that the viscosity
coefficient is mainly a function of the temperature T.
We next turn to the heat flux due to the non-uniformity of the temperature field.
Since T is a scalar, the non-uniformity is characterized by a vector VT . If 3
is the heat flux vector (the rate of heat flow per unit area), the assumption of linear
dependence leads in an analogous manner to
g = -kVT (III. 10)
where the proportionality constant k is the ''coefficient of thermal conductivity'.
Eq. (III.10) is known as the "Fourier law''. From a molecular viewpoint, both u
and k owe their origin to the random motion of the molecules, and these -:two are
closely related. For example, for monatomic gases, kinetic theory predicts
k/u C, = %/3
where Cv is the specific heat at constant volume.
With Eqs. (III.9)' and ‘(HI‘. 10), it is now possible to represent P and E
explicitly. For 3 , there is
P, ov

[gFds

fg RN

2 , | .
J’E,T axj Tijd"f , by Gauss' theorem; or, as 5> 0,
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(II.11)

For E , there is

ESr = f?-?f’ds+ T - kVTdS
s s

= fs(‘t .u, +k§xl) nde
]
- fsr’c\‘% L +k§1] ] de
where u, is the component of V in xi—direction° As 8¥ — 0, it follows
=£E<Tﬁui>+a—g<k§§—_>, (. 12)
Hence, with Eq. (III. 11) the momentum equation, Eq. (III.3), becomes finally
pli)ut'=—99 afj'c'. (I 13)

*In the energy equation, Eq. (III.4), we note that for the fluid element in motion,

E—U+—V2

where U is the internal energy of the fluid element. Together with Eq. (III. 12),
Eq. (III.4) after simple manipulation becomes finally

bu _ _ ‘
PDT = pejj+ 'tijelj ax (kbx (Im.14)

The second term of the right hand side clearly represents the work done by the
viscous stresses, and often is defined as the ''dissipation function' @®. It may be
easily verified that & 2 0 when Ti'j is given by Eq. (III.9) '.

Alternative forms of the energy equation, Eq. (III. 14), are sometimes useful.
For instance, in terms of the entropy S, since by thermodynamic definition

TdS = dU + pd(’—l))

the continuity equation, Eq. (III.2) (with m = 0), and Eq. (III. 14) combined

leads to

pTDS =9 (kax ) . (II.14)"

In terms of the enthalpy h , since by thermodynamic definition
h=U+E
P

Eq. (III. 14) may also be replaced by
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Dh _ Dp + § + 9 ¢ 3T '
f 5t = Dt &( 5;), (IT1. 14)"
i J

1V. Physical Boundary Conditions of Fluid Motion

__;l‘he fluid motion has been defined in the above through the unknowns p, }), T
and V, which are required to satisfy Eqs. (II.2), (III.2) (with m = 0), (III.13) and
(II1.14). A typical problem is to find the solution when an obstacle moves through
the fluid in a prescribed manner. In the fluid domain, there remains the question
of relating the values of these unknowns for the fluid elements in contact with the
obstacle, with the prescribed motion and properties of the obigacle itself. We may
think of Eqs. (II.2) and (III.2) as defining p and,) in terms of V and T, so Egs.
(I11.13) and (III.14) are really the equation to be integrated. Thus, if the obstacle
is impermeable and represented by the surface FS(xi’t) = 0 and its temp_e_)rature by
the condition T = Ts(t) on FS:
the fluid elements satisfying F= 0.

S
Now the resultant velocity of a point on the obstacle must satisfy DFS/ DT= 0.

0, we are interested to assign values of V and T for

Since the obstacle is assumed to be impermeable, the velocity of the fluid element
at the same point must have the same velocity component normal to the surface,
and therefore satisfy also DFS/ Dt = 0, although the tangential velocity is still
arbitrary. We refer to this as the ""condition of no penetration", or

DFg _ .

Bi - 0 for fluid elements on FS= 0. (Iv.1)
Obviously by the same reasoning, Eq. (IV.1) is also the condition at the interface
between two dissimilar fluids.

As for the tangential component of the fluid velocity and the temperature of the

fluid element at the boundary, one usually appeals to experience whenever the mathe-

matical solution requires these data. Ordinarily it is assumed that the fluid element

shall have neither a relative velocity with respect to the boundary -- the "condition
of no slip", nor any temperature differences from that of the ptoundary ~- the '"con-
dition of no jump'". These are confirmed as first approximations by kinetic theory

considerations, so long as the gas is not too rarified.
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The precise conditions under which the mathematical problem will be ""properly
set" is in general a difficult question because of the complicated non-linear nature
of the equations. The practice is rather to look for a solution when physically the
problem is well - defined and can be set up in an experimental investigation. However,
it should be noted that empirically under seemingly identical conditions the observed
flow may be either "laminar" or "turbulent'. Take the steady flow through a circular
pipe as an example: A mathematical solution of the equations predicts that the flow should
move in layers, and is indeed well confirmed experimentally but only if the flow
velocity is relatively small. At higher velocities, the actual flow is composed of a
steady mean motion superposed by random time - dependent fluctuations, This pheno-~
menon is typical rather than exceptional. It strongly suggests that the general unique-
ness condition for the system of equaticns describing fluid flow would be extremely

difficult to lay down.

V. Rotational and Irrotational Motions

We defined in Eq. (II. 7). the vorticity vector brd
-
w = VxV

representing the rigid body rotation of the fluid element. Kinematically, the fluid

motion may be classified as rotational or irrotational depending on whether @ # 0

in general or & = 0 everywhere in the fluid. We note first that because @’ is the

- . —
curl of V | it is a solenoidal vector, i.e., V-w = 0.

Now if we have a steady flow
I

field with m = 0, the equation of continuity, Eq. (III.2), reduces to V- P V =0.

Thus by analogy it can be said that & also satisfies an "equation of continuity’'. Let

a contour C enclosing a surface S be drawn in the fluid.

> c'
Vortex lines can be passed through points of C to form a —
'vortex tube'', and the following must hold: dz:
J a °
s “195 = Jgr “i 9

where S' is the area enclosed by C' anywhere downstream along the vortex lines

from C. In particular, by taking S — 0, the vortex tube becomes a very thin
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"vortex element". Thus a vortex element can never end within the fluid. It may,
however, form a closed loop.

If the fluid motion is an irrotational motion, by applying Stokes' theorem to the

§CV°d2’= jswidsi=

Consequently a "velocity potential' @ exists such that

V=vg

Since a scalar ¢ defines the velocity vector, the mathematical problem is then to

contour C,

find the solution for a single function g and becomes much simplified. It is there-
fore of interest to examine the circumstances under which the irrotational approxi-
mation may be adopted.

With m = 0, consider the momentum equation, Eq. (III.3),

DV _ 1y
Dt P '
Expanding DV/ Dt, we have
DV _ 3V 1 BT
-ﬁ—t-—ﬁ'*'gv - Vxw . (V.1)

Hence, by straightforward manipulation and with Eq. (1II.,2),

VxI—)-Y = gthV V x(Vx @)

- D—’ (T V-

D .
p[D—t(%-(% V.

The ''vorticity equation' follows immediately

D :,‘7 3 -—?. 1 l—'b
ﬁf(F)_(?)L V)V+FVx(pP)- (V.2)

We shal-l‘ examine the behavior of & under the following simplifying conditions:

th

1) p=p (p) , €.8., pKk )ox for isentropic process ( ¥ being the ratio of

specific heats), or p = const. for incompressible fluid;

2) M =0, the inviscid approx1mat10n Under the simplification, Eq. (III. 11)

gives P- -Vp, and since Vx(-Vp) Vx(VJ—R) 0, Eq. (V.2) becomes

Wwv

or i O
=—u

(%

w
Flax
Y5

3

Qo "Itj

P
_‘£1._
tp

Cd s
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Noting Eq. (1I1.38),

= -2¢& =
95 %4 1jk“’j “k 0
We finally get
DYy Y (V.3)
Dt p p i

which is sometines interpreted as saying that following the fluid element, Ui / P
changes due to the *stretching'' of the vortices. In particular, for two -

dimensional motion @ = (0,0, w3) but e, = 0, Eq. (V.3) degenerates into

33

o %3 =0 (V.4)
saying that the vorticity, strictly speaking W, / P, is attached to the fluid element
without change. Following Eq. (V.4), aslongas p = p(p) and in the inviscid
limit, if at some time the fluid element does not possess vorticity it will not acquire
vorticity in two - dimensional motion. When the flow field is set up from rest through
the arbitrary movements of a two -dimensional body, we therefore expect irrotational
motion at all times. For the general three - dimensional flow, the same conclusion
can be reached by integrating Eq. (V.3) for a given fluid element. ¥ These are of
course only useful in practical cases when the underlying assumptions are acceptable.

Let us now examine the role of viscosity. Consider for simplicity the small
perturbation from a state of rest, i.e., 7 = —\?' , @ =, P =P +p!', ete., Po
being the density of the fluid at rest and primed quantities being the small perturba-
tions. After neglecting the quadratic terms involving the perturbation quantities and
with the help of Eqs. (III.11) and (III.9)', Eq. (V.2) is reduc]ed to the diffusion
equation

AR A s (V.5)
where Y, = p 0 / £o the kinematic viscosity. If a vortex element is generated in
an infinite fluid at t = 0 and maintained afterwards, the consequence of Eq. (V.5)
is that the vorticity will spread out, with decreasing strength, to occupy a region of

. 1
size (vo t) /2 beyond which the effect is essentially nil. This result is qualitatively

*
See e. g., L. M. Milne-Thomson: Theoretical Hydrodynamics, 4th ed. ,
Macmillan (1960), p. 84.
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useful in visualizing the flow patterns surrounding X

a body moving in a fluid at rest. Suppose a

\%
thin two - dimensional plate of length L .
moves parallel to itself in a viscous fluid . R
at constant velocity V. An obvious irro- 5" _4 L ‘ x1

tational solution is that the fluid is undis-
turbed, satisfying all differential equations except for the viscous ''no-slip' and
"no-jump'’ conditions at the surface. We imagine viscosity to be absent for t <0,
but suddenly turned on at t = 0. The fluid elements in contact with the plate will
be instantaneously arrested, creating a surface of discontinuity which may be inter-
preted as a vortex sheet composed of concentrated vortex elements. The vorticity
subsequently spreads out approximately at a rate O (\/;O_/T). To an observer
fixed relative to the plate, the instantaneous flow pattern will be swept downstream

- at a speed equal to V and the vorticity will be seen as essentially confined in a
region roughly parabolic starting from the leading edge of the plate, at the end of
the plate the thickness & reaching a value O({ fszT/V ) . In non-dimensional

form, we have therefore

%,.40(1/\/%)

where Re = VL /uO , the "Reynolds number'" based on the length L. There

would be furthermore a disturbed region ahead of the plate of size 9', given by

8!~ O(V/ZIOS'/V)

or, again in terms of a Reynolds number, Reb' =Ve /yo ~O(1l). Thus the
size of the region of rotational flow because of the viscous effects is confined to
the immediate neighborhood of the plate as Y, —> 0. In fact, the thickness &'
tends to zero much faster than the thickness 8. The layer of Q(®) adjacent to
the body is referred to as the '"boundary layer''. The viscous and rotational
region swept behind the body is the '"wake''. Outside of the thin boundary layer
and the wake, the flow is seen to be essentially irrotational. For blunt bodies

these qualitative descriptions remain valid, but although the boundary layer thick-

ness is still proportional to /»

0 the wake will be of the order of the body

834
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thickness. It should be mentioned that rotationality may also be present due to

curved shock waves which form ahead of the 5 A~
. —_— ~ L

body when it moves at high speeds. (See §X ) _ v  wake

This is an example where p = p(p) is not s o 1<

true,

Finally we note that the boundary layer and the wake are actually the corrections
to an inviscid solution due to the viscous boundary conditions. Consequently outside of
these regions whether the flow be rotational or irrotational, the fluid may be regarded
as inviscid. As the kinematic viscosity of gases is usually very small, in most flow
problems the Reynolds number will be large and the boundary layer will be relatively
thin. Then the inviscid ''no penetration'' condition may be applied without serious
crror as if the boundary layer were absent. The difficulty of the unknown boundary of
the wake, however, cannot be circumvented in constructing an inviscid approximation

for blunt bodies.

V1. The Inviscid Approximation

Let us now exploit the inviscid approximation. Since the viscosity M and the
thermal conductivity k are of the same mechanism, the fluid should also be regarded
as non heat - conducting in the same approximation. The immediate consequence
from Eq. (III. 14)'is

%S{ =0 (VI1.1)
i. e., the entropy is constant following each fluid element, though not necessarily
throughout the flow field. The "Navier - Stokes' equations', (Eq. III.13), de-
generate into the '"Euler equations"
—
p%\t—, = -Vp- (VI.2)
The continuity equation, Eq. (III. 2 ), of course is unaffected:

QR + . v = O .
ot TP vV-v (VI. 3)
Consider again a small perturbation of the fluid from rest at pressure p 0 and

—pt
density Po- Neglecting quadratic terms of the perturbation quantities V , p' and



Basic Fluid Dynamics 14

pr, we get the ""acoustic theory' from Eqs. (VI.1-3):

S =S _, const.
air’o
Poat = -Vp' (VI.4)

—1
= Q&—' + V-V = 0.
Po
The first of these may alternatively be expressed as
- Y -
p/py = (p/py) » ¥ Cp/cV )

or p' = azp' (VIL.5)

where a = ./(ap/ap )S = YpO/PO , the '""speed of sound''. Eliminating p' and

>1
V in favor of p', we find

-ngp' —azvzp' =0 (VI. 6)

ot

which is the ""wave equation''. The elementary solution for introducing a small dis-
turbance at a point at t = 0 is such that the disturbance spreads out in space at a

rate equal to the sound speed 'a'', and beyond a radius of at the fluid is undisturbed.
For a source of disturbance moving at constant velocity -\—/'-), to an observer fixed to
the source of disturbance,two different flow patterns result depending on the ""Mach
number® M # V/a., For M <1 the disturbance spreads out in all directions,
eventually swallowing up the entire space in a long enough time. For M > 1, the dis-

turbed region is conical, formed by the envelope to the drifting spheres, with the

at

M<1 M>1

vertex at the source of disturbance, the semi - angle being equal to the '""Mach angle"

. -11 . o . .
sin - The conical surface itself for finite time, in conjunction with the spherical
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surface in the back, is the wave front separating the undisturbed and the disturbed
regions, Following von Kdrmadn, one may refer to the undisturbed region ahead of
the conical surface as the ''zone of silence'', and the disturbed region behind as the
""zone of action''. While the above is based upon linearized small perturbation theory,
the difference in behavior of subsonic and supersonic flows remains qualitatively the
same even if the disturbances caused by the moving object are no longer small.
Without restricting ourselves to small disturbances, we return to Eqs. (VI. 1)
to (VI.3). In certain cases, a first integral of the Euler equations, Eq. (VI.2),
can be directly obtained, and as a result further simplify the problem of finding a
solution. By Eq.(V.1), Eq. (VI.2) may be written as

—>
oV 1322 = 1
3¢ + 2VV - VX ——on .

i
Now the definition of entropy S is, for a given element, TdS = dh - 1 dp. But
inasmuch as T and p are always expressible as functions of p and h, this
expression may also be regarded as an ordinary differential relation defining

S (p,h), hence leading to

TVS=Vh—l

P

We define next a '"stagnation enthalpy" H,

Vp .

1>
H=h+ —Vz
2
and recast Eq. (VI.2) into
3J—> —
5;V+VH—TVS=V’<Z?. (VI.7)
0 —>
For the special case of steady flow, 3t V =0, Eq. (VI.7) is known as '"Crocco's

theorem'', showing for instance that vorticity would arise due to entropy gradient.

If Eq. (VI.7) is dotted into the length element df

—p
along a streamline, at given t, and then integrated \ / B
between the end points A and B, the result is d?
B B B
)
b_tJ 7.d?+[ dH—j TdS = 0. A
A A A

This yields the so -called ""Bernoulli's equation' in the following cases:
DS

d = —> - =
a) For steady flow (a =0), ot - V-VS =0, hence V and df

8§37
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are both normal to VS. Consequently
H = const. along any streamline (VL. 8)

.

b) For irrotational flow with uniform entropy everywhere ('‘homentropic!').
7= Vg and VS = 0, hence

% + H = const. along any streamline, (VL. 9)
When the streamlines can always be traced to a region of steady uniform flow, the
constant in the right - hand side of Eq. (VI.8) or (VI.9) becomes identical for all
points in the flow field.

We next proceed to derive the equation for the velocity potential ¢ in an

-
irrotational homentropic flow. The scalar product of V with Eq. (IV.2) leads to
2 2

v 13 2 _ a gy
3 2 ta(V-T)V -—pv-vP
2
- a % 7
—P[at+pV-V],

by Eq. (VI. 3). But differentiation of Eq. (VI.9) gives

2 2 .2
a”3% dvV: dd
pat+at2+gt7_0'

Eliminating Sttz between the two expressions, we get

2 2
d .2 J0¢d 2_ > 2 \A
atV +az-aV-V+V-V2—O. (VI.10)

In Cartesian coordinates, Eq. (VI.10) may be written as

2 2 2 2 2 2
By~ (2 -0 )d (2 -d)d - (2 -d,)d,,

+2(¢x¢y¢xy+¢ g o +9 8¢

X Z XZ y 2 yz

+¢x¢xt+¢y¢yt+¢z¢zt) = 0. (VI.10)!
2
Here a is expressible also in ¢ by noting that
2 2 2
. Xp,vV _a V
H 7‘1’0 + 2 = Y1 + 3 (VI.11)

while Eq. (VI.9) shows that H is directly related to 9¢/dt. It is, however, more
instructive without explicitly evaluating az, To fix ideas, suppose we have a body of

characteristic length L, characteristic velocity Voo in an unsteady motion of
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characteristic time too . We assume that generally amO(aoo ), aoo being the
characteristic sound speed. Then in Eq. (VI.10)" appear the dimensionless para-
meters
Machno. M =V /a
00 ®’ 0 9
and Strouhalno. x=L/V t . If x~0(1), as M_—>(0 the
(o0}
equation reduces to the Laplace equation
Vz¢ =0 . (VI.12)
Eq. (VI.12) constitutes the (inviscid) "incompressible approximation" since the
equation can also be directly obtained by setting Dp /Dt = 0 in the equation of
—
continuity and then using V = Vg. The velocity potential now may be solved from
the prescribed normal derivative of ¢ on the body surface (to satisfy the condition

of '"no penetration’’ ). After ¢ is obtained, the Bernoulli's equation, being an

integral of the momentum equation, determines the pressure field which simultaneously

must co-exist. We shall not discuss the various techniques of solving Laplace's

equation.

VI. Small Perturbation Theory for the Steady Flow over Thin Bodies

Z

To illustrate the behavior of the solution of A y
Eq. (VI. 10)" when the incompressible approximation
\Y
is not applicable, consider a uniform stream of __‘:

velocity V00 in the x-direction flowing over a fixed —
thin body lying close to the x,y-plane. For suffi- -
ciently thin bodies, the uniform stream will only be slightly disturbed, and we put
the resultant velocity potential as the superposition of that for the uniform stream
and a small perturbation, i.e.,

AT AN Y
Eq. (VI.11) further for steady case becomes

2 2 _ Y1 2 2
a —aoo— 2 (V00 V). (VII. 1)

After substitution of the above into Eq. (VI.10)' and retaining only linear terms in
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g', we get
2 ~
(1-Mm)¢§x+¢§y+¢z'z=o (VIL.2)

provided ll -Mi) | ~ O(1). By a simple stretching of the coordinates

X! :x/VII—Moozl, y' =y, z'=z,

Eq. (VII.2) reduces to

_'t ¢;(IXI + ¢3"'Y' + ¢Z"Z' =0 ’

the '"+' corresponds to Mi§ 1. Thus the subsonic flows all satisfy Laplace's
equation while the supersonic flows satisfy the wave equation. In fact, by examining
the transformed boundary conditions in the new coordinates, it follows readily that
flows over a class of bodies at different Mach numbers can be related to each other.
The interpretation of a known flow over a given body and Mach number as that for a
different body at a different Mach number is referred to as the 'similarity rule’.

In subsonic flows, such is known as the ''Prandtl - Glauert rule', in supersonic
flows, the '"Ackeret rule".

The linearized theory, Eq. (VII.2), fails when some of the neglected terms
become comparable with those retained. If we evaluate the neglected terms, it may
be verified that the above linearization implies

(i) a2—(VOO+¢)'()2~ ai—Vi>>Vm¢3‘, or VOO¢£

(ii) a~a00>> ¢3'1 , 9{71
The condition (i) breaks down where aig Vgo , or Mi) = 1, i.e., in "transonic
flows'. The condition (ii) breaks down when aoo<< Voo , or MOO>>1 , i.e., in
""hypersonic flows'. In both transonic and hypersonic cases, then, we are forced
to non - linear theories even for small perturbations.

Let us demonstrate briefly the complications of the transonic approximation,
If Voo = aOO , it is convenient to consider the flow over a thin body as small pertur-
bations on a uniform sonic flow (VOO= a = a*, say ) without the body. Thus putting

g = a*x + g
and rewriting Eq. (VII. 1)

Ve = g2 V-1

2 ¥+l x2 ¥Y-1
a = — a - — - —
2 2 2

[2a*¢;(] +00

900
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we get from Eq. (VI.10)' after retaining all quadratic terms,

141 LIPE - e 1 -
S (g atidy voy ) -2 (B8 Hhid,) = 0

The essential features remain unchanged by restricting ourselves to two ~dimen-
sional motion in the x,z -plane:

11 W 141 =
~({+1)8191 +a*d 26161 =0,

Here one or both of the quadratic terms must be everywhere of the same order as
the term a* ¢Z'Z . In order to do so, clearly the function ¢' must vary much more
rapidly in the x -direction than in the z - direction. Hence the first term should
dominate, and the "transonic equation" for two - dimensional steady flow finally
reduces to \

-({+1)¢‘:¢"N+a*¢:'z= 0. (VIL 3)

The '"similar rule" for relating the transonic flows over geometrically similar
bodies of different thickness to each other was deduced by von Kdrman.

In analogous manner, the non -linear perturbation equation for the velocity
potential and the similarity rule in hypersonic flow have been given by Tsien. How-
ever, strong curved shocks inevitably occur in hypersonic flow, and the flow behind
the shock and over the body is generally rotationai. Tsien's equation therefore loses
much of its significance. On the other hand, if we plot Eq. (VII. 1), in hypersonic
flow the sound speed a and the resultant velocity V will always be in the region

near the maximum velocity V
max

_ 2
Vnax. Voo[1+((-1)M§o]'

For considerable variation of the local

Mach number, the resultant velocity V

is essentially unchanged. In addition, v Vmax,

the streamlines around thin bodies are always only slightly inclined. Consequently,
it is obvious that the perturbation velocity u' << v', w'. Neglecting u' completely,
the steady flow pattern in the y, z - plane at different streamwise stations x can be
interpreted as the unsteady flow pattern in the y, z - plane at successive times, the

elapsed time At between two stations Ax apart being given by at = Ax/ Voo .

901i
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This is the essence of Hayes' "equivalence principle'', which holds regardless of
whether the flow is rotational of irrotational, of whether any shock wave occurs at
the nose of the body. It simplifies the problem of hypersonic steady flow over a

thin body by reducing it to an unsteady flow over a body of lesser dimension.

VIII. One -dimensional Unsteady Flow and the Formation of Shock

We now return to Eq. (VI.10)' but restrict ourselves to one -dimensional

unsteady flows,

¢tt

2 2
- - + 2 = - » 1
(a ¢X)¢XX ¢X¢Xt 0, (VIIL. 1)
According to the theory of quasi - linear partial differential equations, this equation
is hyperbolic, just as in the acoustic approximation, since the discriminant

(2¢X)2+4(32 -¢i) - 4a2>0.

Thus there exist real characteristic curves, along which the values of ¢X and ¢t
may be described without uniquely determining the higher derivatives ¢xx , ¢xt s
Let the running variable along such a characteristic curve be 0. For prescribed
¢X and ¢t along the curve, the following must hold
= + t
¢ ¢xx XO' ¢xt o

X
+ 4t (VIII. 2)

L A g

We normally should be able to solve ¢xx’ ¢xt and ¢tt from Eqs. (VIIL.1) and

(VII. 2), except when X and tcr are such that the matrix

2 2
2 - _
1 ¢X (a ¢x ) O
tﬁ' XO‘ 0 ¢to*
0 t X d
o o pea

has rank 2. Hence, to require the curve be a characteristic

2 2
1 24 -(a " -¢)
X X
t xo_ 0 =0
0 to’ Xo‘

or d
(VIIL, 3)

2 |G
]
qﬂ- |q><
Il
AN
+
m
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giving the directicn of the characteristics. Also

1 —(a2—¢2) 0
X

ts 0 o =0
0 X x0
or g, _=¢ (-4 _+a), (VIIL. 4)

giving a condition on the variation of ¢x and ¢t along the characteristics. Thus
we have two families of characteristics, which may be referred to as the C4
curves, resp., according to the sign "+#' in Eqs. (VIII.3) and (VII. 4).

By using the Bernoulli equation, Eq. (VI.9), the sound speed '*a" may be

related to ¢x and ¢t. If initial data are X

preseribed along an ordinary curve (not

coincident with either characteristic) in

the x,t-plane, it is known that the charac-

teristics relation Eqs. (VII. 3) and ( VIIL. 4) t

uniquely determine the solution in the curvilinear triangle ABD, bounded by the
characteristics C+ and C_ through A and B, resp. The segment AB is
the '"domain of dependence" for point D. Likewise, if data are modified along
a segment A'B', the solution in the shaded X
region shown in the sketch will be affected

and is the ""range of influence" of the seg-

ment A'B'. Moreover, the higher order

derivatives normal to a characteristic may t

be discontinuous. Consequently, a characteristic , and a characteristic only,
can serve as the boundary between regions of constant state and variable flow,
provided Eq. (VIII. 1) holds everywhere.

Now, by differentiating the Bernoulli's equation along a characteristic,

there follows

2a
+ + =g =
bt PP V2= 0 -

Because of Eq. (VIII. 4), it'reduces to

903
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2 _
do [i¢x+)’—1a] =0.

Thus, if we define the ""Riemann invariants'” r and s as

1 a
r= 2 ¢x+f—l
(VIIL. 5)
1 a
5= 2 ¢x— Y-1
it follows that
r=r(=), s=s(4)

where o = const. along the C+-curves and ,é = const. along the C_-curves.
( The running variable o becomes 4 along C+ and « along C _.) Equiva-
lently, since by Eq. ( VIII. 3)

Xe/tg = g+ a, Xy/toa = 8_ - a,

X
we have
or ar _
ot T (2805 =0
VIII. 6)
Os ds (
3t © (—a+¢x) ox 0.

The property r is thus propagated forward without change at the local sound
speed relative to the fluid, while the property s is propagated backward without
change at the local sound speed relative to the fluid.

It is clear that in general a region in the x,t-plane may be mapped to a
region in the r,s -plane through one - to - one correspondence, However, there
are degenerate cases of basic interest. If the flow is in a constant state r=r_,

0

s = s0 in a given region in the r,s -plane, this region will be mapped to only a

point in the r, s -plane. There may also be regions in the x,t-plane which map

into a line r = rO (or s = sO) in the r,s -plane. The latter case represents

motions referred to as 'simple waves'.

In ‘'simple waves' since the whole region maps to the line r =r_, say,

0

all the s -characteristics (C_-characteristics ) become points along r = ro.
Back in the x,t-plane, then, along a C_—characteristic 5 = Sl’ say, we have
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hence ¢t and ¢x must be constants. The C_-characteristics in the x,t-plane
therefore will be straight lines.

Let us now consider the flow which is of constant state in a region of the
x,t-plane. This region is mapped to a point ( oo So ), say, in the r,s-plane.
The boundary between this region of constant state and the adjacent region of variable

flow must be a characteristic, say s=s Now in the r,s-plane all the s-charac-

0
teristics must start from (r 0’ S 0) . Thenextone s = Sy must be located along
the line r=r 0’ since along the boundary s =s 0 the characteristic directions

extending into the region of variable flow are still completely specified by r =r 0
Thus the adjacent region of variable flow must be mapped into the line segment

5,5, along r = Ty
state must be a "simple wave'. 'Simple wave'' solutions consequently are instru-

The conclusion is: The flow adjacent to a region of constant

mental in constructing solutions containing regions of constant state,

t
Consider as example the problem of

moving a piston in a long tube filled with piston /ﬂ
ath
gas at rest. The bounding characteristic C,
between the region of gas at rest and the Mcle
X

region of moving gas is now a C+. When

. (a) Retracting piston
the piston is retracting, straight C+—char—

acteristics can be constructed from the ¢ ‘

prescribed piston path, as in sketch (a), C,
and the flow completely determined. When o

the piston is advancing, however, the C + .
characteristics so constructed tend to (b) Advancing piston

intersect, as in sketch (b). At the intersection we have different values of r and

a given s_, and the values of ¢x and ¢ ¢ can no longer be solved.

0 ’
The situation is further clarified by u-a€—— . ro 'r ——> u+a
'
considering a slightly different example. (8g) , S ! (rg)
Suppose in a long tube of gas at rest a P 1
Py W ralpy)

certain portion is disturbed to the state

ro(x),so(x) at t=0. Subsequently,
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the disturbance r_ moves to the right at velocity u + a, and the disturbance s

0 0
moves to the left at velocity u - a. Let the disturbance r 0 have a density
distribution at t =0 as sketched. Since

(¥ -1/,
a(p) =Vip/p £ p
we know that da /dp > 0. Also, as the boundary between the disturbed and
undisturbed regions must be a C+—characteristic, the simple wave solution for
. u a
the forward propagating disturbance satisfies s = 0, i.e., 2 "Y1 0.
Hence du/da> 0. Thus if pl> Py as oA
sketched, we conclude: u1> u2 and t =0
upralpy ) >uy ta(p,) . > x
The time history of the density disturbance P4
profile will be as shown, with progressive t1> 0
N\
steepening of the '"'compression side'' of > X
the disturbance (increasing density for PA
the fluid element when swept by the dis- t,. > t
/—\ 2 1
turbance ), and progressive flattening of > X
the "expansion side''. Eventually it is o
seen that the simple wave solution must t>t
D, " °
necessarily break down when the profile : > X

develops a vertical slope, since any further progress would require the crest to
move ahead of the foot, representing a multi - valuedness of the density which is
obviously not acceptable. This corresponds té the situation when the characteristics
of the same family intersect in the earlier example.

What actually happens in such cases is that discontinuities in the flow variables
are developed. The boundary between the disturbed and the undisturbed regions
becomes a ''shock wave', instead of a characteristic. Without considering the dissi-
pative mechanisms of the viscosity and heat conductivity of the real gas, the shock
wave is of zero thickness across which finite changes in u and [ take place, But
the basic conservation laws of mass, momentum and energy for the fluid flow in

crossing the shock wave must still be obeyed.
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IX. Steady Two -dimensional Homentropic Flows

If we specialize Eq. (VI.10)' to steady two -dimensional flows, the governing
equation is

2 2 2 2 _
(a -4 )4+ (a -¢y)¢yy— 2¢xdy¢xy- 0. (IX.1)

As in the previous section, to classify this equation, the discriminant will be
examined. It reads

2 2
49740 - 4(a"- g (2 - 8)) = da” (2" - (gL D))

Thus there are three possibilities:

a) a2 - (¢j + ¢;) >0, i.e., the flow is everywhere subsonic, then the

equation is elliptic;
2 .2

b) 32 - (¢’X + ¢y ) < 0, i.e., the flow is everywhere supersonic, then the
equation is hyperbolic;

c) a2 - ¢j + ¢:) changes sign in the flow field, which consists therefore
of both subsonic and supersonic regions, then the equation is of the ''mixed type''.

For subsonic flows, the limiting case of incompressible approximation satisfies
V2¢ = 0, which, being linear, can be solved conveniently for most cases. The
difficulty of the general case Eq. (IX.1) is primarily in its non -linearity, destroying
the possibility of building up a desired solution through superposition. So long as
M2 <1 everywhere, a straightforward procedure is to expand the solution in an
ascending power series in, say, the free stream Mach number M00 , l.e.,

g = ¢0+M020¢1 +M;¢2 +.

where ¢ 0 obviously is the incompressible solution. The successive terms
¢1 , ¢2 , etc. satisfy the Poisson equation

2
Vg =F (4.9, -9

)

This is known as the Rayleigh - Janzen method. As expected, experience shows that

the convergence gets worse when the local Mach number approaches unity somewhere.
More generally, Eq. (IX.1) may be reduced to a linear problem by means of

a "hodograph transformation', considering (x, y) as functions of (u,v). The

continuity equation, Eq. (VI.3), may be written as

907




Basic Fluid Dynamics 26

— + 9— v=20
x P byp
from which a stream function % may be defined such that
POV'y=Pu’ POVX:: —PV (IX.2)

where Po is a reference constant density. Let now (g, ¥) replace (x,y) as

the dependent variables. Let also the the variables (q, 6) in polar coordinates

for the velocity, i.e., y
= q cos 6 v ‘ qﬁ@f
= ¢ sin 6 u

> x
replace (u,v) as the independent variables. Then by definition the following

complex relation holds,

dg + i%o- d¥ = udx +vdy + i (-vdx +udy)
= qe_ledz
with z = x +iy. Hence
-1 i0 . Po
z = e +1
q ¢ (4, o Vq]
-1 ie . Po
Zg=a e [dg+15 2
Requiring now that qu =z 0q’ we find by equating the real and imaginary parts,
_ d pO V
¢q dq pq]
5 Pod y (IX. 3)
6 P q

p being here regarded as a function of . Itis now possible to derivz a linear
equation in either ¢ or ¥ by elimination. For instance, in terms of ¥,

K3 dPo D Po
36 [ 4 dq Pq)V]

‘

}V ] = (IX. 4)

This equation was first derived by Chaplygin in 1904 in his investigation on gas jets.
The disadvantage here is that the boundary conditions involving a given body become
very involved. One usually has to take a solution and then find out the exact body

shape for which it is the solution.

The relation p (q) implied above of course is given by the Bernoulli equation,
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Now in the incompressible case, Eq. (IX.3) reduces to
1

%= "q %% %=y
Chaplygin observed that the general case will assume a similar form if
qji(gg)=-
q ' pq P4

which may be integrated into q2 oL 1-( EPQ )2 , expressing the required p(q).
Indeed the Bernoulli equation yields such a form for the hypothetical gas with

¥=-1. Thus by approximating the time isentropic relation p eCp* by an
expression

p=a+ bp—x
it becomes possible to relate incompressible and compressible solutions in the

hodographic variables. The well - known Kdrmadn - Tsien approximation for subsonic

1
flows amounts to a tangent approximation of the isentropic curve p vs. =, near

the reference density P 0’ chosen as the p N
density at the ''stagnation point'' where b
p o’
q = 0. [} N /
FoN
It is noted that Eq. (IX.3) is no '
less general that Eq. (IX.1) and there- A 1 /PO 1/p

fore not restricted to subsonic flows. As a matter of fact, certain simple solutions
give examples of continuous flows involving both subsonic and supersonic regions.

In interchanging the roles of (x,y) and (q, 8), however, a one -to -one
correspondence is implied. When 0(q, 8) /0 (x,y) =0 a finite region in the

X, ¥ -plane is mapped to a line or a point in the q, 0 -plane. We get for the former

a solution, if M >1 everywhere, kxiown as the '"Prandtl - Meyer flow', correspond-
ing to the "'simple wave" of the previous section, while the latter clearly represents
a uniform flow. When 9 (x,y)/0 (q,8) =0, a finite region in the hodograph plane
is mapped generally to a line in the physical plane, requiring therefore multi - valued-
ness of the flow along this line -- again a physically unacceptable situation. Such lines
are known as ''limit lines", occurring only when M>1 locally and indicating the

breakdown of the assumed continuous irrotational homentropic flow.
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In the region of supersonic flow,

\

since Eq. (IX.1) becomes hyperbolic, - y 1 C_ v
the method of characteristics again may - é %
be used. The characteristic direction, o Cs
corresponding to Eq. (VIIL.3) are l > X
found to be N —%: s

I O E; (IX.5)

a

the '""F'" sign corresponding to the C+ -directions, resp. in the sketch. It can be
verified that the C, -directions make an angle eM with the local velocity vector,
0 being the '"Mach angle'.,

M -1 1

0. =sin — ,
MsmM

The characteristic conditions, corresponding to Eq. (VIII. 4), may be conveniently
expressedin p and 6, 6 denoting the local velocity direction, as

cot 6

dp F q2d9 = 0 along C,. (IX. 6)

The ''simple wave" solution when a finite region if the x,y -plane is mapped to a
single characteristic C+, say, in the p, @-plane follows directly

dp = qu de/ m ’
hence dp/d6>0 in such flows. In conjunction with the Bernoulli equation the above

may be integrated. We only note that since
d
Ly gqdq =0
P .

the "simple wave" equation may also be written as

dg = __-de

q Me -1
‘hence dq/dG <0 1in such flows. Thus speed increases as pressure (or density)
decreases, and vice versé.
The same ‘argument in the previous section may be followed to prove that a

region of uniform supersonic flow can be extended continuously into a region of
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variable flow only through the simple wave
solution. As an example, the supersonic
flow turning around a corner is obtained
by drawing successive C_-lines from the
corner until the velocity leaving the last

C_ -line has turned through the full angle

AO. Since 0 is continuously decreasing in the stream direction, pressure drops
and speed goes up as a resﬁlt. The transition region is known as the Prandtl -
Meyer expansion fan.

If the flow is along a concave wall, A6> 0 and pressure tends to rise in the
streamwise direction. Here again the C_ - characteristics will intersect and a
continuous solution becomes impossible.

Thus we must expect shock waves to

appear in two -dimensional steady flows

when a supersonic stream is subjected

rtrerrrrrrrrz? .
to a compressive disturbance (increasing pressure in the streamwise direction).

X. Shock Conditions and Flows with Shocks

Consider now the one - dimensional A
, T
problem of a piston moving uniformly at > —>
velocity U into a long tube containing A 1’
gas at rest with pressure p1 and density A

p 1 We postulate a shock wave separating the disturbed and undisturbed regions,
advancing at an unknown velocity U Al It seems clear that U A must be defined by

only U, p 1’ and Py hence a constant. By dimensional reasoning,

U

U =UF(——) . A

A /p1/pP1 '

|

Now it is possible to let an observer ride on the shock i
Uy Up=Ua

AA | reducing the flow near the shock to a steady one. :
For a small area on AA, the conservation laws of Pyr Pa P1: Py

]

mass, momentum and energy then give A

11




Basic Fluid Dynamics 30
P11 = P2 Y
vp UZ = p +p U2 (X.1)
Py *P1Y TPy P2V :
2 2
Uy Uy

UL (hy #75) =Py Uy (hy+ 7))
h being the enthalpy as used in Eq. (IV.14)". Together with the equation of state,
p= PRT , all the variables with suffix ''2" can be solved in terms of those with
suffix ""1'., The result is known as the ''Rankine - Hugoniot" relations. It turns

out that for given

Ml = Ul/ \/(RT1 >1 p2/pl, ‘oz/p1 and T2/Tl

e are all greater than unity, while M2 = U2/ \/YRTz <1. Furthermore, the entropy
S2 is found to be higher than Sl . Hence, although the same Eq. (X.1) holds if

both U1 and U  are reversed in direction, the second law of thermodynamics

is obeyed only whzen the motion is in the direction sketched. Thus the shock wave
propagates into the calm region at a supersonic speed (with respect to the sound
speed ahead of it).

Turning back to the piston problem, we see that a solution is possible by taking
the disturbed region to be in a uniform state, determined by requiring U2 =U- U1
after the shock of the Mach number M1 . That there is no other solution can also be
shown in the following manner: We need ¢
a solution in the wedge shaped region in
the x,t-plane as shown, taking on the

velocity u = U along the line OA and

the velocity U2 - U1 and density Py 0
from the shock relation along the line OB. Now the lack of a length scale suggests
that the solution must depend on a single variable & = x/t. It is then easily verified
that a solution of the form p=p (), u=u (&) cannot be made to satisfy the
boundary condition except as constants.

It further is clear that a uniform translation of the entire flow field in any direc-
tion should not affect the conservation laws. In particular,by imposing a uniform velocity

U parallel to the wave front AA, the oblique shock making an angle « with the
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oncoming velocity Ul' is obtained. The

1
u' |
normal velocity component is therefore A\ 2 | U
S
|

seen to be the effective one in causing the U,

. « U
shock wave., In this way the oblique shock <« 1

I

relations follow immediately. As the con- |
servation laws are applied to a small area on the wave front in deriving Eq. (X.1),
the shock relations are actually local in nature and remain valid locally on any
curved shock surface.

The real gas of course has viscosity and heat conductivity as dissipative mech-
anisms, which resist the discontinuity occurring in a shock wave of zero thickness.
The net effect is to smear out the shock wave, so that the upstream and downstream
densities P1 and pz , say, arc approached
only asymptotically. However, most of the
change occurs in a very small thickness of Py o

1
J ) —» X
molecules. Unless the upstream or downstream part of the flow varies significantly

the order of the mean free path of the gas

in such a small thickness, the shock structure plays a negligible role in fluid
dynamics.
We now mention some examples of steady flows with shock waves. Consider

a two - dimensional wedge placed in a uniform
M 1 >1

. . . shock
supersonic stream. In previous sections, we
concluded that the compressive disturbances S—
due to the turning of the streamlines to parallel >

the wedge surface causes the presence of shock

waves. By inserting a straight oblique shock attached to the vertex, it is generally
possible to have a uniform and supersonic flow parallel to the wedge after the shock.
For a given M 1> 1, however, the wedge angle may be too large for any attached
straight shock to turn the streamline sufficiently. Then it becomes necessary to
postulate a "detached shock” in front of the body, starting necessarily as a normal
shock at the line of symmetry. The flow behind the normal shock is of course sub-

sonic, but as the shock bends gradually toward the body surface away from the line
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shock
of symmetry, the flow behind the shock eventually M. >1
becomes supersonic. The flow problem involving ..}..,
detached shocks is thus of the mixed type and dif- . L& _
—_
ficult to treat except numerically. —_

As soon as curved shocks appear in a uniform
stream, it should be noted that the flow behind it is strictly speaking always rotational.
The entropy change depends on the obliqueness of the shock, and the different values of
entropy along different streamlines give rise to vorticity (Eq. (IV.7), '"Crocco

Theorem'' ). For instance, to calculate the shock

M _>1
flow around a two -dimensional curved body 1
——
with pointed nose in a supersonic stream,
_ —_—
the solution should be started with an attached
shock at the nose and continued by the method —

of characteristics, complicated by the unknown shock inclination at successive steps
as well as the resulting rotational nature of the flow. However, the entropy change
across a shock turns out to be third order in the ''shock strength'' parameter,
which may be taken as (p 9" P; Y/ p,- If the shock is not strong, the assumption of
isentropic flow is not too far wrong. Thus a practical approximate method for the
curved body problem, known as the '"shock expansion method", is to regard the
streamline immediately adjacent to the body as following a Prandtl - Meyer expansion
after the leading edge shock. Its use of course cannot be extended to hypersonic

flows where the shock will always be quite strong.

In hypersonic flow the blunt body is M 1 shock
of practical interest. The very difficult 1
—_—
problem of the mixed type flow behind a —_
detached shock is an inherent feature. —_——
The limiting case of M. >, however, >

1
permits at least a much simplified first

approximation. Based upon the observation that, after a normal shock the Rankine -

Hugoniot conditions give the density ratio as
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Pp_ Ui (eDIME (yey)

2
as M, —»> o,
PL Uy 2+ (r-1MpP (v-1) 1

henceif ¥ =1, Pz /Pl -» o, For air at normal temperatures ¢ = 1.4; at very
high temperatures with dissociation ¥ becomes even closer to unity. Thus as a
rough approximation we might examine the flow with ¥ = 1. Now as Py / Py > @,
the shock will locally simply wrap around the body, since the continuity equation is
only satisfied by having no thickness between the shock and the body. Neglecting the
actual thin ''shock layer' thickness, the pressure on the body can be determined
directly from simple momentum consideration: S

P-p, = P, U12 cos? 8. nei
This result is identical with what would have 1

been predicted according to Newton's corpus- u

cular theory, that the oncoming gas consists

of particles moving at the same speed U1 .
Hence this type of approximation is referred to as ' Newtonian'', For refinement the
effects of the error of Y =1 has been accounted for, for instance, by expanding

the solution in terms of the small parameter (¥ -1)/(¥ +1).

XI. Viscous Flows and the Low Reynolds Number Approximations

We have so far considered a great deal of the fluid motion under the inviscid
approximations, on the basis that for small viscosity and high speeds the viscous
effects will be confined to a thin boundary layer immediately adjacent to the body
and to a wake behind the body. Such theories obviously can be of no value in
connection with the question of skin friction and heat transfer which depend on
the details of the motion within the boundary layer. Furthermore, the precise
boundaries of the wake must be known in order to construct the essentially inviscid
solution surrounding the body and the wake.

It was first systematically observed by Reynolds in pipe flows that the
viscous fluid motion can assume different forms dependent essentially on the
dimensionless Reynolds number Re = VL /» , where V is the characteristic

velocity (e.g., mean flow velocity through the pipe), L a characteristic length

9i5




Basic Fluid Dynamics 34

(e.g., the pipe diameter ) and =z the kinematic viscosity of the fluid. On the cne
extreme, at sufficiently low Re the fluid may move steadily in layers parallel to

the pipe axis; on the other, at sufficiently high Re the motion may become time -
dependent, irregular and random, but with well defined time averages. The former

is referred to as "'laminar' motion while the latter is referred to as ''fully turbulent"
motion, Naturally there is also a ''transition" region in which the laminar motion
develops into the fully turbulent one. Similar types of motion prevail also in boundary
layers. The details of the flow clearly cannot be investigated without first knowing
whether the motion is laminar or turbulent. The question of the transition from
laminar to turbulent motion is thus of prime importance.

Generally speaking, when the flow is ostensibly governed by physical parameters
which are invariant with time, the laminar motion corresponds to the solution of the
equations of motion under the assumption of steady flow. If deviations from the steady
flow can occur without changing any of the governing physical parameters, the ques-
tion must be one of stability. As usual the stability problem may be formulated by
studying the behavior of perturbations. Unfortunately, mathematically the stability
theory is rather difficult even for very simple laminar flows under infinitesimal
disturbances. The results are further valid only for the initial breakdown of the
laminar flow. Nevertheless the stability theory does provide qualitative correlations
between transition and the various physical parameters. The actual beginning of the
fully turbulent region however is yet beyond the capability of theoretical prediction,
The situation is complicated in addition by the fact that, for bodies in flight, irregu-
larities of the body surfaces and in the free stream all have profound influence on
transition.,

The analysis of fully turbulent flow is even more difficult. By putting the
instantaneous flow variable as the sum of the '""mean' part plus a fluctuation, equa-
tions for the mean motion may be derived from the general equations of motion, but
contributions due to the non -linear interaction of various fluctuations inevitably
show up as additional unknowns. For instance, in the mean momentum equation,
the momentum transfer due to the fluctuating velocity components through the fixed

control surfaces of a fluid element leads to the turbulent or '"Reynolds" stresses.
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In simplified analyses, ad hoc assumptions are made by expressing the Reynolds
stresses in terms of other mean flow variables, and a formal solution may then be
carried out involving adjustable parameters, which are finally chosen in some way
to agree with experimental findings. Such theories are of course semi -empirical
in nature, but often unavoidable for practical purposes.

We restrict ourselves in the following to only some of the laminar flow prob-
lems. It may be noted that most of the peculiar nature of viscous fluid motion owes
to the relative roles of the viscous term and the non -linear convective terms such
as —V’ V_{l» in the equations of motion. Thus not much generality is lost when the
complications of compressibility are omitted for brevity. For an incompressible

viscous fluid, Egs. (III.2) and (III.3), together with Eqs. (III.9) and (III.11),

lead to the following

Yy
V-V=0

a{? > > 2> XI.1
P(—a—t'+V-VV)=-Vp+jLVV (XI.1)

known as the ''Navier - Stokes equations'', in which the viscosity coefficient may be
regarded as constant if the temperature range is small. Our pr.pose is to examine
some of its solutions for flows over bodies. The boundary condition on the body is
that of ''no slip"' as discussed in §IV, After the velocity and pressure fields are
determined, the temperature field may then be solved separately from the energy
equation Eq. (III.14), under the '"no jump' boundary condition.

Since Eq. (XI. 1) is non -linear, an attempt to simplify is naturally that of
linearization for small perturbations. Considering therefore an object moving at
very low speed in a fluid at rest, we might neglect the quadratic '"convective'" terms
-

\ v?r’ from Eq. (XI.1). It follows immediately that

2
Vp=20
(XI.2)
V2V2V =0,

Since the highest order derivatives are not disturbed, it appears that all the boundary
conditions for the original equations can be accomodated. This was first used by
Stokes to calculate the drag on a sphere moving steadily at a low speed Voo in an

unbound fluid at rest, and is known as ''Stokes' approximation'. By using the
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sphere radius ''a' as a characteristic length and the speed VOO as the
characteristic velocity, an order of magnitude estimate gives

> > V. a

P—————V L YV ~ L — = Re
2 7 2 a’

M v
Thus Stokes! approximation corresponds to the limiting case of Rea L1, i.e.,
very low Reynolds numbers based upon the sphere radius ' a".

The explicit solution of Stokes' sphere problem, however, leads to

asymptotically for large r,

—» - 1 Oé
VAV [1+0(5))

where r is the radial distance measured from the center of the sphere, the coordi-

nate axis having been fixed on the sphere. As r/a -> o, we find in fact

- -
pvV. VvV Vor

—> ~ T —> o,
m Vv k4

showing that Eq. (XI. 2) cannot help but fail as an approximation of Eq. (XI.1) at
far enough distances, regardless of the smallness of the Reynolds number, In other

words, the convective terms eventually take the upper hand as compared with the

viscous terms. The seemingly innocent Stokes' approximation is not uniformly valid.

In fact, for two-dimensional problems, it is easy to see that Eq. (XI. 2) must lead
to asymptotically for large r,

VAY [1+0(log?
Vo~V [1+0(log ).

In an unbound fluid the condition of uniform stream at large distances cannot be
satisfied at all,

The difficulty of Stokes' approximation is perhaps best understood by
observing that there are actually two characteristic lengths in viscous flow. Besides
the geometrical length ' a" we also have a viscous length W/Voo.. In the near
field close to the body, the dimensionless distance of interest is indeed r/a, but
in the far field away from the body the flow must be expressible in terms of the
dimensionless distance wr /VOO regardless of the body. In general, therefore,
two separate approximations are called for, to be matched somehow in an overlapping
region where both might be acceptable. In the terms of Lagerstrom, Kaplan and Van

Dyke, it is an example requiring the matching of an ''inner' and an "outer"
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L
expansion.

The criticism of Stokes' approximation regarding its behavior at large distances
from the body was first made by Oseen. As a remedy, Oseen's proposal was to recog-~

nize the far field as a small perturbation of the steady uniform stream, hence

- > > 1
V.-VV =V .V (XI. 3)
a1 > . .
where V =V - V00 , the perturbation velocity. Since the rest of the terms in Eq.
-3 -t

(XI.1) are linear in V, they may all be written without change in terms of V .
Retaining Eq. (XI.3) as a first approximation of the convective terms everywhere,
we get the "Oseen equation'’ for steady flows -

. -1

V.-V =

> (XI.4)
PV’

0
—>1 2 -1
V = -Vp+uV V

—1
again with the same boundary condition as before but expressedin V . As an

approximation for the far field, evidently the primary effects of the convective terms
are represented correctly. As the body is approached, the flow will be characterized
by the geometrical length ''a'" and the convective terms still are much smaller than
the viscous terms for Vco a/v << 1. It is however of uncertain validity in the region
where the two types of terms are comparable. For the sphere problem, the drag
coefficient from the Oseen approximation is found to be

C =—61[1+%

2
-+
D Rea Rea o (Rea )1

where the first term agrees with Stokes' result. ( Terms up to O (Re;) have been
computed by Goldstein. ) A recent more careful analysis shows that the O (Ref)
term in the bracket actually should be 3 Rea2 log Rea (Proudman and Pearson,

40
J. Fluid Mech. 2, 237 -262, 1957).

XTI, Theory of the Boundary Layer

In the other extreme of large Re, we need to describe the motion in the thin

"boundary layer” immediately adjacent to the body. In §V it is seen that the boundary

* For the technique of "inner" and ''outer' expansions, see e.g. M. van Dyke:

"Perturbation Methods in Fluid Mechanics'', Lecture Notes, Stanford University.
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layer thickness & is O (1//Re;). For apoinf fixed in space, no matter how

close to the body surface, as Re > o it will lie outside of the boundary layer.

This corresponds to dropping formally the viscous terms in the Navier - Stokes

equation, and yields the inviscid approximation.

In order to keep the point in ques-

tion within the boundary layer, we must therefore maintain y /9 finite, where y

denotes the distance from the body surface, even as & <> 0 in the limit. To be

more specific, consider for simplicity the steady two -dimension motion of a flat

plate moving parallel to itself in an unformed incompressible fluid. We have here

again two length parameters: the geometric length L of the plate, and the viscous

boundary layer thickness &, d~ L/ Re . In the limit Re, > or d>0,

the inviscid solution is simply the undis-
turbed uniform flow. The u-component
velocity in the boundary layer parallel to
the plate is generally characterized by

V‘00 The order of magnitude of the v-

A% y \'
— T L% u S
O I -
= . —_—
o

component velocity may be inferred from the continuity equation,

5 d
VNO(S g—‘;dywow-a—i) :
0

Since all changes in the y-direction must be accomplished within the thickness 8,

there follows also
0

L 0 a
@NO(_S)-G_XNO(\/ReL)&'

Thus by introducing dimensionless variables of comparable magnitudes

u*’=u/V00 , V’”=(V/VOO)\/ReL , p":p/PVOi
=x/L , ¥*=(y/L)/Re,

Eq. (XI. 1) becomes

du* ov*
S " ay% 0
du du* op*
x O u_ - _ _9%
e T dy* dx*
1 p*
©fRe ) 77 oy
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We now let ReL - © and omit the terms O (1 /ReL ). The result is the bourzldary
layer equation of Prandtl. The most important feature is the replacement of V u
by azu/ ayz in the x - momentum equation, retaining at least one of the highest order
derivatives in the full equation, The solution is also greatly simplified by the conse-
quence of the approximate y- momentum equation that leads to

p* = p* (x%),
i.e., constant pressure across the boundary layer at each streamwise station. In the
flat plate case under consideration the pressure must agree with that in the free
stream, hence a constant. The derivation, however, obviously is not valid wherever
u and v are of the same order of magnitude, such as the stagnation point regions
at the leading and trailing edges of the flat plate.

The same order of magnitude arguments can be applied to bodies of arbitrary

but smooth shape. By interpreting the x- v
coordinate as running along the body surface
and y normal to it, the same boundary
layer equations result except that the omitted
terms include those of O (KS), where K is the characteristic curvature of the body
shape. The pressure remains unchanged in the y-direction, the correction due to
centrifugal force being O (K®). To match the boundary layer solution with the invis-
cid solution which prevails beyond the boundary layer, it is noted that since & > 0
in the limit, the conditions at the '"edge of the boundary layer' must agree with the
inviscid solution evaluated at the body surface. This consideration leads to the boun-
dary conditions that, as y* »

u-> ui (x,0), p +pi (x,0)

ui (x,y) and pi (x,y) being the inviscid solutions. There is on the other hand no

condition on v* as y* -»> o ; 80 long as it is finite, the discrepancy between
v = lim v*/\/ Re and v, (x,0) = 0 is of no consequence at this level of
Re;>® L 1 '

approximation, At the body surface y =0, the '"no slip'" condition of viscous fluids
must be satisfied by setting u=0, v=0 as usual.

It should be remarked that the boundary layer equation would assume different
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forms depending on the choice of the coordinate system, hence also the flow field
which follows as the solution. In his study of the two -dimensional steady incom-
pressible boundary layers, Kaplan introduced the notion of an ''optimal® system
of coordinates that render the boundary layer solution to agree completely, as

y* - o, with the inviscid solution evaluated at the surface y - 0, in both u-
and v -components to O (1/ ./Ee-; ). But the boundary layer solutions in the
optimal and any other non - optimal system of coordinates are shown to be able to
transform into each other, Furthermore, he proved that the skin friction at the
body surface is independent of the coordinate system. The choice of the coordi-
nate system is therefore not too crucial for ordinary purposes.

Though much simplified from the full Navier - Stokes equation, the non -linear
boundary layer equation still defies general treatment. To reduce Eq. (XII.1) to a
single dependent variable, the stream function ¥ may be introduced by defining

u¥ =3y /oy* , v¥=-a¥/ox*
guaranteeing thereby the satisfaction of the continuity equation. Now we apply the
"'von Mises transformation'' to the second equation of Eq. (XI. 1) by choosing

(x, ¥) as the independent variables instead of (x,y) and obtain
du* dp™ 0
9 _ _dp ¥ O ou_
ox™ dx* T 172 (u b}V)

pil‘

il

u

(XII. 2)
p*(x) , given

il

This equation is clearly parabolic in nature. Indeed, if the dimensionless stagnation

x
pressure P replaces u® as the dependent variable

2

HR = *+]‘_1_=:.

P p 2
Eq. (XII. 2) may be put into the form 9
D k_ px_ k72 O P*
aX*P -[P -p ] aw

which becomes the diffusion equation but with a complicated diffusivity. Thus the

solution P* (x,¥) can be found in the region x* 20, ¥'20 if we specify an
initial profile P* (0, ¥) along x* = 0 and also the condition P* (x,0) along
¥'= 0. Since p* (x*) is a given function, the conditions on P¥* of course are

equivalent to the statement that from a given initial velocity profile u (0,y) the
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solution can be continued uniquely to x7 0 for given p (x). As V> o,
'()ZP"'/GW2 > 0, hence OP*/0x - 0 and the solution merges with the inviscid
potential flow P* = const. Note also that no disturbances are propagated upstream.
It is of interest to be able to stipulate an initial profile for the boundary layer
over an arbitrary body. For all blunt-
nosed bodies there always exists a front

stagnation point O. Locally the flow is

equivalent to that against an infinite wall

normal to the stream. This is recognized
as a special case of the symmetrical flow
against a wedge of half angle ® . (In fact, the flat plate also is a special case, with
« =0.) In all such cases it turns out that the inviscid potential flow is of the type

v o x™ ,

@

the exponent m depending on the half angle x, 0 € m €1 for 0 € x £ /2,
Although we do not have an initial profile u (0,y), a class of "similar solutions"

can be found in the form
u dF
V_(x)  dy
where F = F (%) and % is defined by
71 =y/ [2vx/(1+m)Vm]

The function F (%) corresponds to the stream function, satisfying an ordinary

1/2

differential equation:
FM'"'+ FF'" + /6(1 - F'2) =0
p=2m/(1+m) (XII.3)

with the required boundary conditions:

y=0, u=v=0 or F(0)=F'"(0)=0
y"’m’“évm(x) or F'(w) > 1, (XII. 4)

The case of m =0 gives the Blasius solution for the flat plate. The caseof m = 1
gives the stagnation peint solution, which is in fact the exact solution of the Navier -

Stokes equation for the same problem. The existence and uniqueness of the solution

.. 923




Basic Fluid Dynamics 42

of Eq. ( XII. 3) under boundary condition Eq. ( XII. 4) are established mathematically
for ,3 > 0 by Weyl. Numerical solutions for various values of /5 (or m} were
calculated by Falkner and Skan, and refined by Hartree. For /6< 0, it is interesting
to note that the condition F' (o) - 1 fails to determine a unique solution, and v

Hartree had to stipulate the additional requirement that F' (4) should approach

unity in the most rapidly possible way. Even so,he had to stop at /3 = -,199, beyond
which the velocity develops an overshoot within the boundary layer which seems
physically hard to accept. At /5 = -.199 the profile has the feature that
du /0y y=0=0° A :
The similar solutions are useful Y 0> #5-.199 :
not only to start numerical calculations A =-.199 _|

near the stagnation point, but have often

been used as the basis for constructing

a first approximation for flows involving 0

> U /VOO
rather arbitrary pressure distributions as might occur in practical problems. Let
an arbitrary V00 (x) be given, then -dp/dx = VOO (dVOO/dx). Now, proceeding
as for similar solutions, let u/VOO =0F /3%, but F = F (E,%) with

1 (X = 2
£ = ;f v, dx. '1=y/lvoo /2% 1.

0
The boundary layer equation for F in ( §, 7)) is found to be
2
F FF 1- = -
77t mvﬂ;u F,) = 2§(F,Fe, ~FFyp)

L 27 dVy (XI1.5)
- Vozo dx

it

The boundary conditions are still Eq. (XII.4)

¥ =0, F-—-F7=O; 7> o, F_,l—>1,
The approximation next is to neglect the right - hand side and solve F as an ordinary
differential equation with /5 (%) as aparameter. In other words, the similar solu-
tion corresponding tc the local ﬁ (&) is used as an approximation, the past history
being partially accounted for by the §-transformation. This is known as the "locally

similar" approximation. For improvement Gortler took it as the first term of a

series expansion in the solution of Eq. (XII.5). Nickel (K. Nickel; Ing. Arch. 31,
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85-100, 1962} verified that the local similar solution always provides a lower bound
of the true solution u (x,y) so long as d/A/dE,’é 0.

Let us adopt the locally similar approximationto get a qualitative picture of the
flow within a boundary layer under pressure gradient. If the pressure gradient is
always '""favorable' (V(;0 >0), Y/ >0, we expect rather normal velocity distributions
somewhat like that on a flat plate. But if VC;O< 0, it becomes possible for ,d to reach
the critical value of -.199 and even exceed it. There can then be no description of
the boundary layer beyond that point. The question arises: what happens then?

It is usually taken that what happens then is the observed phenomenon of ''sepa-
ration", i.e., the streamline begins to detach from the surface. Beyond the separation
point, close to the surface the flow direction will be reversed, and the boundary layer
approximation ceases to hold, That sepa-
ration indeed could happen at £ =-.199 is
made plausible by noting that here

=0
tion at the wall is given by

du /0y ,y = 0. Since the streamline direc-

wov Lwy L w
dx u y=0 du /0y y=0 Ou /9y y=0

hence dy/dx = 0 if Bu/ayly=0 # 0; but the slope is of the form 0/0, therefore
indefinite if du /6y‘y=0 = 0. According to this criterion, an adverse pressure
gradient is necessary for separation, in perfect agreement with experience.

We briefly turn to the energy equationagain for incompressible fluids, to intro-
duce the basic concepts in heat transfer. The equation reads, after taking the boun-
dary layer approximations,

Oh dh 3, k dh
v Cp ay
= ﬁ- o2

32p (XI1. 6)
M/Cpk = .76 for air in ordinary temperature

)
c
=4

>
+
-5
<
2|

]
H]

where the Prandtl number Pr
range. The equation clearly is of the same structure as the x- momentum equation

in Eq. (XII.1). When (u,v) are described by a similar solution, h will
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resemble u in behavior and depend on the same variable., The equation is linear

for given (u,v), and can be more easily solved in general. Let us mention only the

simplest case of flat plate, where the x-momentum equation is

TR 'S
Puax P ay T/ ayz

For the case of Pr =1, we clearly have a special solution h = au + b, with
constants a and b, suitable as the solution if h assumes constant values at
y=0 and as y >, i.e., constant wall and free stream temperatures. The heat

transfer at the wall is, in such cases

_/La.._ll =a/Aa_u/ =aT
oy y=0 6yy=0 0

or ('1/'(0 =a, T being the shear stress at the wall. This is known as "Reynolds'
analogy'' (of heat transfer and skin friction ), ordinarily cast in terms of non -
dimensional coefficients.

In the case of compressible fluids, the boundary layer concept can be used to
derive a set of simplified equations similar to Eq. (XII.1). Through the variable
density, the momentum and energy equations become coupled and must be solved
simultaneously, adding much complexity in the solution. Only in special cases may
the ppoblem be reduced to an equivalent incompressible one through suitable trans-
formations. At hypersonic speeds, the shock wave, whether detached or not, tends
to approach the body surface. Then the inviscid and viscous layers would interact
with each other, or even merge together. All these phenomena require considerable
finesse in handling. For general three - dimensional bodies in unsteady motion, the

theory is yet in an undeveloped stage.
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The Spheroldal Method. 1.

The potential function for the Earth can be written as

V=-A[l-"f

r n=2
where (1)
6: latitude
r: geocentric distance

r
£
r

n
JnPn (sin 9)] + Tesseral harmonics

r,t Earth's equatorial radius.

Most theories for satellite motion employ perturbation

methods starting with the unperturbed potential, Vo = —[i/r.

However, because of the oblate shape of the Earth, it is
possible to choose a zero-order potential which is a
better approximation and at the same time leads to a
separabte Hamllton-Jacobl equation.

The motivation 1s based upon the fact that the
Hamilton-Jacobi equation 1s separable in oblate-spheroidal
coordinates. These coordinates can be defined by the

relations
1

X + 1y = r cos o €10 _ [(p2+c2) (1—'722)]-5 ci® (2)
Z =r1r sin 6 = n
§= p/c s

where for large values of r
p ~r (3)

n ~sin 6 .

The coordinates are ;),7?,7’; 7 1s the longitude of right
ascencion.
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The Spheroidal Method. 2.

It can be demonstrated that the Hamilton-Jacobi
equation 1is separable in ﬁ),72,7’ if and only if

f( ) + 8(77) (4)
£+ 07
One then looks for the most general functions f and

g which satlisfy the following form of the Laplace equation
and do not lead to singularities on the §'—axis:

_a_a_g_[(g )&‘é}+§n [(1-77) 7?}—. (5)

It can be shown that the most general form of V
that satisfies these conditions is
vV = bg§2+ bén2=boRe (§+17])'l+b1Jm(§+1T()‘l
&Nt g+ (6)
The potential V can be expanded into spherical harmonics
in the following manner:

2
(§+17?)2=§2' +21§7Z =£§ l+g—i'-;9-sin9—§—)
(7)
L
2) 2
-1 ¢ 2ic c
(£+i72) —F(l+——-sin9-—;§)
o0 n
_-.%ZO (:%9- Pn (sin 6) . (8)
n=
Therefore, we can write
bAC 2 4 -b,c 2
0 ] c 1 c
V=— [ - =P, + P, + ... [P - <= P, + ...]
r 22 ;E 4 ] e 1 273
(9)
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The Spheroidal Method. 3.
For large r, we must choose boc = -L; to satisfy (1), we
require c© = p e2‘J o+ It can be demonstrated that
o —
b_l-c = ,L(J:'eJl = -L(§ (10)
g = coordinate of mass center.
Thus,
2
v =& 1-f-e—JP—re)4JP+ (11)
T or r2 272 rE 4ty
where
_ 2
-74 = -J2
_ 13
Jg = J, (12)

J8 = -Jzu, etC-,
and all odd J's vanish.

For

v KL, (13)

p+c7’?

the singularities at [J/c = 7] = O are focal circles.

Connection with Problem of Two Fixed Centers.

P
n '
The potential at point P 1is
Vo
V _m m - N B |
-g=tr (14)
G ry rs !
where :

2p
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The Spheroidal Method. 4,
r12 = r2 + a2 - 2ar sin ©
(15)
r22 = r2 + a2 4+ 2ar sin © .
These lead to the expansions
o0 yi = an
1l _m_ a = am a
T, 1, ;- (r) Py (sin 8) = r /2; (r) Pon (sin o)
1 1 £=0 1 £=0 (16)
= 2n
1 2m Z: a
L _éam -&) p_ (sin @) . (17)
r's s 420 r 2n
Let
a =c\f1
2m = M (18)
26m = [
The potential in (14) can then be written as
2 4
Y 7 2 c
V = r[l 2P2+—EP4] . (19)
r r
When c® = re2J29 we have the same result as (11), but
we don't know that this is the most general potential
that results in separability.
The coordinates for the two centers are
§ _ r2+1"1
2a (20)
M - ol
T 2a 2
or
rp=a(§+7)
(21)
I'l = a( § - 7? ) 0
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The Spheroidal Method. 5.

If a = ic, one can verify that

x + 1y =c[(§2+1) (,1-7]2)]2 e1® (22)

One can ask in what sense the two potentials are identical.
In the problem of two centers, one can distribute mass
uniformly between the two singularities. For the more
general potential, distributing the masé uniformly over
the focal circle does not produce the same field.

The geoid is defined by the relation

41
€ = 0(3,2)

2

J2P2 + E‘] + %-L/gree cos20 = constant, (23)

Thus, through terms of O(J22), the geoid is

1+€ [ ( _)2 ] + %szr 2 cos %@ = constant.(24)

Neglecting any harmonics of coefficlient € beyond J
produces a fractional error, € .

2

Eg. J3 = 2.3 X 10_6

Since the separable potential is accurate through J2,
the error of the corresponding geoid is less than

[|J2| + IJ4 + J2|2 + 'J3| + |J6 -3+ ..‘..;_,.llel]- . r,,

(25)
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The Spheroidal Method. 6.

this value probably being less than 120 feet.

Separation of Hamllton-Jacobi Equation.

H = sz—-l—b-z%.f—%z—z. (26)
Let
s = 5,(0) + 5,() + 5,(7) . (27)

The separation constants are CZl = energy, CZQ, CZ3 = Z-
component of angular momentum.

The 1lsolating Iintegrals are

d s a2s
58
pU3p T TER o T AT (@

One finds integrals of the form

[]ap
[Jan (29)

v
nooH

1 I
L“#“ﬂ
1+ 1+

n
]
R
w
-

o 0
P Mo
Bo=5%; - fplt[]dp+fo + [l an e
P n
- 28 . + + + ° +
ot s U (MU
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The Spheroidal Method. 7.
a(n) = -20(1c2(7]02 - 772) (7122 - N 2y ; (33)
motion confined between two hyperboloids:

e S

N2>>1>7,° .

F(0) = (-204) (p - p1) (pp-p) (pZ+aD +B) ;

(34)
motion for negative energy, (X 1<O_, is confined between
two spheroilds: 0.,<O0<< POz

No’» Nz P12 P2 A, B are all functions of (X,
0(2, a3 and some function of the initial conditlons.

Following Izak, new variables are introduced:

a=%(pl+,02)

. - ﬁ__p iiﬁi (35)

I = (sgn 0(3) sin_lT(o,

The real difficulty lies in inverting (30) and (31)
to solve for p+72

This is accomplished by first introducing the uni-
forming variables E, V, W 5 X defined by the relations

2
P=2a(l - e cos E) = %‘é‘i——;{% (36)
7?= TIO sinw
sin X = cos¥ -
2

[l- T(02s1n2\|/]




The Spheroidal Mithode

- 1) stny
T

[1- N 2en® V]2

cos X =

Assume the expansions

E = ES +E,. +E +E

0 1 2
V = VS + VO + Vl + V2
= Xs + XO + Xl + X2 9

where the "s" subscript denotes the secular part.
ES = VS = Ms = gsecular part of mean anomaly.
One finds
. fele. 5
MS = 27T'U1 s L& = —5-35 where Ji = Cbpidqi is

the action variable;

X2
‘\?=27TU2 3 U2=
Including the periodic terms of order J2,

M _+E. - e' sin (MS + MO) = Mg

S 0
_a_
e' = aO e
a =——.g—
0 2cxl

o

]
)
+
O
P
[

V is then found from the relations

+-936

(37)

Let

(38)

(39)

(40)

(41)
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The Spheroidal Method. 9.
_ cos E
cos V = 7= cos E
1 (42)
2,2
_ (1-e“)%sin E
sin V = l1-e 'cos E '

By 1ncluding periodic terms of order J2, one can

also find relations for XO in terms of VO'

The terms left out of the gravity potential are
r 3 r 4 o
= € e
AV =t =75 I3P5 (sin @) + JL—r5 (3, + 3,°) B, (sin 9)(;:3}'“

Effects of 99.5 Percent Aspherical Deviations.

Secular Short Period Long Period

Kozai J 3 J Doesn't exist

Vinti J.~ J Doesn't exist

Effects of Remaining 0.5 Percent Aspherical Deviations.

Algorithm
Kozai J23 J22 J22 Very long
Vinti 7.2 7.2 J Lon
= 2 2 2 g
337
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Physical Experiments in Zero g Laboratories

J. P. Vinti
National Bureau of Standards
Washington, D. C.

Lecture notes prepared by Ralph Deutsch.

Reference: J. Research NBS, 67c, July-Sept. 1963.
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Physical Experiments in Zero g Laboratories. 1

1. Forces Acting on Satellite

The principal forces acting on an artificial earth satellite are:
a) gravitational forces including zonal and tesseral harmonics
b) lunar - solar perturbations
c) spin orbit interactions

d) nongravitational forces including

(i) atmospheric drag
(ii) meteoritic impact
(iii) solar radiation pressure
(iv) charge in electric field; induced electric dipole in non -uniform
electric field
(v) charged body induced magnetic moment; moving relative to the
earth's magnetic field
(vi) ferromagnetic currents
(vii) induced currents in satellite producing eddy current effects

In principle, all the non - gravity forces can be neutralized in the satellite by
using precisely controlled jet motors in conjunction with a suitable instrument which

indicates the presence and direction of any non - neutralized gravity force.

2. Unmanned Double Satellite

The nongravitational forces can be neutralized by the jet,

illustrated in the figure. For a spherical satellite, the zero-
gravity condition is maintained by keeping the sensing element Jet
in the center of the satellite by using a servo - mechanism to

control the jets. At lower altitudes, the atmospheric drag is the most important of the
nongravitational forces. Thus the amount of jet thrust required to keep the test object

centered is a measure of the drag force.

3. Manned Space Capsule

a) The test instrument can be a sphere containing a small ball. The sphere must be
rigidly attached to the capsule, be electromagnetically shielded from stray fields, and

have an opening for observing and measuring the displacement of the ball. The external

capsule jets might be under control of an astronaut who would keep the test object centered

at the center of mass.

b) Example: Consider a Mercury - type capsule in a 200 km. orbit.
940
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Physical Experiments in Zero g Laboratories 2
6
mass = 10 gm,
drag = 6x10% dyne
= 1.6 oz.

At 300 km. , the drag is 6x 10° dyne.
c) Compressed Air Jet:

One possible type of control would be a compressed air jet
illustrated in the figure. Suppose that the orifice had a diameter

of 1 mm. and the air is at 6 atmospheres pressure. The thrust

generated by the jet is
T = 50 kg. force sec.
kg. mass 7
To produce the required 6x 10 dynes corresponding to the height of 200 km., the

air reservoir would require 6.8 kg. per circular orbit. If the orbit's eccentricity is
e = 0.03, 1.6 kg. of air would be required per orbit.

On the other hand, increasing the orbit height to 300 km. reduces the preceding
air capacity figures by a factor of ten. However, for long flights of many orbits, the
required weight of the reaction gas would be excessive.

d) Chemical jets?

Microchemical jets are being developed which will be far more efficient than the
simple compressed air jets. The microchemical jets have thrust capabilities of the

order of
T = 300 kg. force sec.
kg. mass
These produce 6 times the thrust of the air jets at 1/6 of the mass of the required jet

material. For exampie

Altitude Weight per Orbit

Circular 200 1 kg.
Circular 300 0.1
e = 0.03 200 250 gm.

= 0.03 300 25 gm.
3. Gravitational Field Inside a Capsule and Relative to It

Let Xx,y,z be a set of inertial coordinates.
Then
| MR = FG+ FD’
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Physical Experiments in Zero g Laboratories 3

FG = gravity force
FD = drag force
R = vector to the center of mass; C.M.

For the test object, T,

R+F=f1.
Therefore,
4. 6,
M M
and
F
i“:f—ﬁ:f-f—g__g
M M

is the gravitational field acting on the test object relative to an inertially oriented
capsule. If the capsule is not inertially oriented, one has to add the apparent forces,
-2wxT, wx(wxr) andthe w force.

For a spherically symmetric capsule
C.M. M
If the capsule is not spherically symmetric, then the preceding relation is an approxi-

f , rigourously.

mation. The gravitational acceleration relative to the capsule is

F
— (X ] - _ _ —D
g=r-={ fC.M. M
For small capsules not at very high altitudes,
F
D
|- fom !¢ w0
Thus, as an approximation
FD
8=-"N
4. Determination of Drag by Measurements Inside Capsule
Let
. - |2
T M

Then if the test object starts from rest at or near the C. M., in a time t it will
travel a distance

s = 1/2 at?.
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Physical Experiments in Zero g Laboratories 4

It is assumed that the test object is contained in a housing that is evacuated and well
shielded from electromagnetic fields.
For example, for a Mercury -type capsule at 200 km. ,
l FDI = 6 X 104 dynes
M = 106 gm.
a = 6x10 2 cm./sec?
In 10 seconds, the test object will have moved
s = 1/2 (6 x10~ %) 100 = 3 cm.
At 300 km., one finds s = 3 mm.
There are a few objections to the proposed measurement technique.

(a) Apparent forces: Centrifugal forces entirely negligible and produce

(b) Accelerations produced by body motions of astronaut: The main
irremovable effect is that caused by heart beats which can produce
instantaneous accelerations of about 10 a. These accelerations vary
very rapidly and tend to smooth out in the inertia of the mechanical
systems.

Ballistocardiography tests have indicated peak displacements from a mean
position of 0.03 mm. for a human subject coupled to a capsule. The corresponding
displacement of the test object would be only 0.003 mm. compared with s = 3 mm.
at a height of 300 km. produced by drag.

5. Determination of Atmospheric Density

If the drag force FD is measured, the atmospheric density can be computed
from
_ 2
Fpy = 1/2 ChApv" .

For most capsules C_ .~ 2.3, v2 is known from the orbit and A is known from

the design of the capsm?le.

For non - spherical satellite, A can be maintained at a constant value during
the measurement of atmospheric density by keeping an axis of the capsule parallel
to the velocity vector. Such control can be accomplished by control jets governed by

a pair of static accelerometers.
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Physical Experiments in Zero g Laboratories 5

6. Determination of Perigee Passage

At perigee, the velocity is

1/2v2 =E+ u§/r.
v2 has a maximum at perigee; moreover, the air density P is also a maximum
at perigee. Even for low eccentricity orbits such as e = 0.03, the maximum of
/o is very sharp. Therefore, by continuously monitoring the drag force, the
astronaut can determine perigee passage and by the use of a clock can determine

the time of perigee passage.

7. Simultaneous Gravity Orbit and Constant Monitoring of Drag

By intermittently operating the control jets, the astronaut could measure the
drag and return the test object to the center of the housing at each test so as never
to permit any collisions within the accuracy of the observations. Note that under
these conditions, the orbit of the capsule is then the same as that of the test object
and is thus gravitational.

Thus we have a technique of simultaneously producing a gravity orbit and
determining the time of perigee passage in each orbit. With proper cooperation
from ground observers, one can also determine the position of perigee on each
orbit. This type of controlled gravity orbit might be very useful for geodetic pur-
poses, both to determine the potential coefficients Jn and to determine station

location errors.

8. Re - entry Meter

Consider a case in which a = 10~ 3 g. Then in 5 seconds the test object would
move

s = 1/2at® = 1/2x1x25 = 12.5 cm.
Thus the test object in its evacuated housing combined with a stop watch is a sensitive

g - meter which would be simple and almost perfectly fail - proof.

9. Tacking the Drag on to a Gravitational Orbit

As the astronaut sits in the capsule, watching the test object drift along, the
motion that he observes is the difference between the true orbit of the capsule and the
gravitational orbit of a particle that starts out with the same position and velocity

vectors. This can be explained by considering the figure.
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Physical Experiments in Zero g Laboratories 6
Let r be the position vector of <
a very heavy particle, and r + ®r be T Sr
the position vector of a satellite which s
/3 A

starts out with the same initial conditions
as the heavy particle.

Let: y
(i) r =r [accurate gravity field, no drag]

(ii) r +8r = r, [approximate gravity field, with drag]

1
r
=1, [v = —7‘115(1 ——r% 35 Py) +drag]
(iii) r, = r, [ approximate gravity field, no drag] /3

6r=r1

-,
For short time intervals, J2 does not have to be included in rys because the
line of apsides moves slowly (4°/day). Thus J2 can be neglected for times less
than a day. In any case, one doesn't need any terms beyond J %, drag, J2x drag,
in the solution for ry. In particular no terms of the order J2 are required.
It can be concluded that in the above fashion, the problem of drag can be
separated from the problem of the accurate gravitational orbit. To find the effect of
drag, solve the problems (ii) and (iii), then the difference &r, andaddto r.
It should be observed that this method will not work for very long time intervals.
For very long intervals one cannot depend upon knowledge of the air density function
P (r, 8). The air density function is so poorly known that one will have to redetermine
the orbital elements long before Jzz, etc., become necessary in the expression for ry-
In other words, the problem of atmospheric drag is not sufficiently well modeled

mathematically to warrant a very accurate mathematical treatment.

10. Zero g Laboratories - Achieved with jets and floating test object

(a) Point of zero g characterizedby f = FG/ M. It is at the center for capsule with
spherical symmetry

(b) In other cases, point of zero g may or may not exist. It probably would not exist
in a space laboratory having the shape of a torus. Usually, if it exists, it will be close
to the C.M. Let us assume that the departures from zero g at the C.M. are small.

(c) Possible experiments in zero g laboratories: free top, liquid shapes and motions,

all experiments impossible on earth because of all - pervasive gravity field.
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Physical Experiments in Zero G Laboratories 7

(d) Experiments in dynamical astronomy, with gravitational or electrostatic
fofces, or both. In this lecture we will only discuss the determination of the
constant G.

(e) It has been noted that the period of a close satellite of the moon is the same

as a close earth satellite. This implies that the mean densities must be equal, or
4 3 _ 2.3
G 3pa =na .
Thus, a marble travelling in a close circular orbit around a sphere whose mean
density approximates that of the earth would have a period T = 84 minutes. Or
more accurately,

G(M+m) = (-2%1)3 a3 ,

where a is the semi-major axis of the orbit which need not be a perfect circle.
The large sphere used to model the earth could float at the C. M. of the

laboratory; it would be kept at this point by external jets which are controlled to
maintain a gravity orbit. Thus if this sphere were enclosed in an evacuated
spherical housing with electromagnetic shielding and an observation port, then the
sphere itself could serve as the test object for maintaining the gravity orbit. A
marble could then be placed in orbit about the sphere by accurately controlling the
initial conditions to insert the marble in a close, nearly circular orbit. If M, m,
and T are measured and a can be determined with sufficient precision, then the

preceding relation can be used to compute G .

11. Lack of Spherical Symmetry

Consider the acceleration of the mass "
G élT_ a3 2 meters
f=—32  -gils, r
2 3 P2

For a perfect sphere of radius Xy

_ 4.3 1 4w
6 = G—3 re g = G—3 I‘e .
thus
a 1/2 3 1 -4 2
f =-—g = —""%x10" = +x10 ~ cm./sec.
L € 2x10 4

= % milligal .

Suppose a perturbing mass, m = 105 gm. is placed at a distance r = 200 cm.
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from the C.M. the change in acceleration would be

§f = Gm _Gm | 2Gma
2 2~ 3
r (r-a) r

For example,

G = 6.7x10" 8 cgs units

m = 105 gm.

r = 200 cm.

a = 15 cm. ;

Af = 25% 1070 cgs units;

-9
af 25x 10 -3
d —/—= = 10 ° , which is too high .

an T W wnich 1s too lgh a value
If the asymmetry can be reduced to 10 3 gm. at 200 cm., then we obtain the better
case of

of _ 195

; 10

There are several difficulties that must be considered in the proposed experiment
for the determination of G .

(i) Lack of spherical symmetry in surroundings. The effect of nonspherical
environments can be minimized by floating the large sphere which is accelerated
about as much as in the marble. The effect of nonspherical environment is equivalent
to the lunar - solar perturbations of an earth satellite, ~ 1/ r3 . These effects might
be further diminished by using shims and having personnel move countermasses to
balance their own movements in the laboratory.

(ii) Electrostatic charges on sphere and marble. It is impossible to completely
shield the experiment electrostatically from charge because of the presence of high
velocity cosmic rays. It will be necessary to avoid the Van Allen belts for these
experiments.

(iii) The control sphere used to model the earth will have unavoidable lack of com-
plete symmetry. Thus the problem is more complicated and will have to be treated
as a nonspherical earth and must be represented by zonal harmonics. Probably the
2’ J22 )

J 1 can be found by determining the C.M. of the sphere using a compound

pendulum. This determination can be accomplished on the ground before flight. J 9

dominant terms will be J 1 J

and J 99 Can be determined by measuring the principal moments of inertia A, B, C
on the ground by means of a torsion pendulum. This is done by determining the

moments of inertia about the various axes, then
[
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C-2(A+B)
2 = —-—————2————
ma

~ LA
J,0® 7 (A-B) .

The effects of the nonspherical sphere can then be accounted for by applying

an appropriate theory for satellite orbits about an oblate earth.




